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Abstract—Synchronization phenomena in networks of globally coupled non-identical oscil-
lators have been one of the key problems in nonlinear dynamics over the years. The main
model used within this framework is the Kuramoto model. This model shows three main
types of behavior: global synchronization, cluster synchronization including chimera states and
totally incoherent behavior. We present new sufficient conditions for phase synchronization and
conditions for an asynchronous mode in the finite-size Kuramoto model. In order to find these
conditions for constant and time varying frequency mismatch, we propose a simple method of
comparison which allows one to obtain an explicit estimate of the phase synchronization range.
Theoretical results are supported by numerical simulations.
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1. INTRODUCTION

The formation of collective behavior in large ensembles or networks of coupled non-identical
oscillatory elements is one of the oldest problem in the study of dynamical systems. Nevertheless,
it is an actually challenging field for a theoretical understanding as well as for applications in
various disciplines, ranging from physics, chemistry, earth sciences via biology and neuroscience to
engineering, business and social sciences. Due to the large number of effective degrees of freedom in
spatially extended systems, a rich variety of spatiotemporal regimes is observed. Three main types of
collective behavior are distinguished: (i) a fully incoherent state or highly developed spatiotemporal
disorder; (ii) partially coherent states, where some of the participants in the network behave in some
common rhythm; (iii) a fully coherent state or a regime of globally synchronized elements. The basic
phenomenon of these structure formations is synchronization, i.e., regime of coherent activity, which
is universal in many dynamical systems and can be understood from the analysis of common models
of oscillatory networks.

Cooperative phenomena in ensembles of globally (mean-field) coupled phase equations were
studied first by Winfree [1]. He mathematically reduced the problem of mutual synchronization
to that of a collective behavior in an ensemble of coupled phase oscillators. He showed that such
oscillator ensembles could demonstrate a temporal analog of a thermodynamic phase transition:
with the increase of the coupling a group of oscillators suddenly becomes synchronized. By using
perturbation methods of averaging, Kuramoto [2, 3] obtained a model of weakly globally coupled,
nearly identical limit-cycle oscillators. The governing system of this model are first-order dynamical
equations with sinusoidal coupling function. This paradigmatic model appears in many applications
in science and engineering. Examples are cells in the heart [4], Hodgkin – Huxley neurons [5], central
pattern generator for animal locomotion [6], coupled Josephson junctions [7], rhythmic applause [8],
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pedestrian crowd synchrony on London’s Millennium bridge [9], semiconductor laser arrays [10],
microwave oscillator arrays [11] etc. For other examples, see [12].

Most results for the Kuramoto model are obtained in the case of infinite dimension (for review,
see [12–14]). In the finite-dimensional case various conditions of the synchronization band have been
proposed [12, 15–18]. In this paper, we present new sufficient conditions for phase synchronization
and conditions for an asynchronized mode in the finite-size Kuramoto model.

2. THEORETICAL ESTIMATES

The well-known Kuramoto model [3] of phase oscillators has the form

φ̇i = ωi + ξi(t) +
K

N

N∑
j=1

sin(φj − φi), i = 1, N, (2.1)

where φi are phases, ωi are natural frequencies, ξi(t) is external noise, K is coupling, and N is the
number of oscillators.

The basic tool in studying the model (2.1) is the “mean field” approach. That is, the substitution

rej(ψ−φi) =
1
N

N∑
k=1

ej(φk−φi), (2.2)

and the right-hand side in (2.1) is changed such that

φ̇i = ωi + ξi(t) + Kr sin(ψ − φi), i = 1, N. (2.3)

This change is valid when r and ψ in (2.2) do not depend on φk, and this is true for N −→ ∞.
The latter constitutes the “mean field” in “all-to-all” configuration of phase oscillators (2.1).

For the finite number N the order parameters r and φ can be written in the form

r =

√√√√(
1
N

N∑
k=1

sin φk

)2

+

(
1
N

N∑
k=1

cos φk

)2

� 1,

ψ = arctan
∑N

k=1 sinφk∑N
k=1 cos φk

(2.4)

and straightforward conclusions about synchronization for the finite number N via (2.4) cannot be
drawn.

The main goal of this paper is to present sufficient conditions for phase synchronization in the
Kuramoto model for any finite number of phase oscillators.

2.1. Properties of the Kuramoto Model

1. Consider the Kuramoto equations for homogenous perturbation ξi(t) ≡ ξ(t),

φ̇i = ωi + ξ(t) +
1
N

N∑
j=1

sin(φj − φi), i = 1, N, (2.5)

where ξ(t) is an arbitrary continuous function. The change of variables φi = φ̃i +
∫

ξ(t)dt
reduces the system (2.5) to the original unperturbed system. Hence, the Kuramoto model
admits

• well-known transition to the rotation mode when ξ(t) = Ω = const, that is why one
considers

∑N
i=1 ωi = 0

• simultaneous escape of all phases, when, for instance, ξ(t) = et
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• effects of additive common noise are equivalent to additive perturbation of the
stationary process of the unperturbed system.

2. The unperturbed Kuramoto system has the invariant foliation
∑N

i=1 φi = const, since∑N
i=1 φ̇i =

∑N
i=1 ωi. This implies that the Kuramoto model is an excessive system of ODE and

cannot have any asymptotically stable states: the coordinate “u” along the vector (1, 1, . . . , 1)
satisfies the equation u̇ = 0.

2.2. Phase Difference Equations

We rewrite the system (2.1) in order to exclude one equation. We choose the first oscillator as
a leading one and introduce new variables and new parameters:

Θj = φj − φ1,Δj = ωj − ω1 + ξj − ξ1, j = 1, N, (2.6)

where Θj is the phase difference and Δj is the frequency mismatch of j’s and leading oscillators.

Proposition. The system (2.1) can be rewritten as

Θ̇i = Δi − KR sin Θi, i = 1, N, (2.7)

where R = 1
N

∑N
j=1

(
cos(Θi/2−Θj)

cos(Θi/2)

)
.

Note that the trivial first equation Θ̇1 = 0,Θ1 = 0,Δ1 = 0 reduces the dimension of the system
due to the existence of invariant foliation, and the function R can be referred to as a new “order
parameter”.

Indeed, introducing phase differences and frequency mismatch (2.6), we rewrite the system in
the form

Θ̇i = ωi +
K

N
(sin(Θ1 − Θi) + sin(Θ2 − Θi) + · · · + sin(Θn − Θi)),

Θ̇1 = ω1 +
K

N
(sin Θ1 + sin Θ2 + · · · + sinΘn),

(2.8)

from which we obtain equations for the new variables

Θ̇i = Δi −
K

N

N∑
j=1

(sinΘj − sin(Θj − Θi)) . (2.9)

Using the formula sin Θj − sin(Θj − Θi) = 2 sin Θi
2 cos(Θi

2 − Θj), we come to the final form of
the system

Θ̇i = Δi − K

⎡
⎣ 2

N

N∑
j=1

cos
(

Θi

2
− Θj

)⎤
⎦ sin

Θi

2
, (2.10)

which is equivalent to the system (2.7).

3. DYNAMICS OF THE KURAMOTO SYSTEM

3.1. Identical Oscillators

In this trivial case the frequency differences Δi = 0, Eq. (2.7) takes the form

Θ̇i = −K
1
N

N∑
j=1

(
cos(Θi/2 − Θj)

cos(Θi/2)

)
sin Θi, i = 1, N. (3.1)
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The zero equilibrium point O (Θi = 0, i = 1, N ) is exponentially stable, since the variational
equation is u̇i = −Kui. The basin of equilibrium O is

|Θi| <
π

3
, i = 1, N. (3.2)

It follows from the Lyapunov function

V =
N∑

i=1

(1 − cos Θi), (3.3)

which derivative with respect to (3.1) is

V̇ = −K
1
N

N∑
j=1

(
cos(Θi/2 − Θj)

cos(Θi/2)

)
sin2 Θi < 0 for |Θi| <

π

3
,Θi �= 0, i = 1, N.

3.2. Equal Frequency Differences Δi = Δ = const (the Differences Against the Leader are Equal)

Equation (2.7) takes the form

Θ̇i = Δ − KR sin Θi. (3.4)

This system has a 1D invariant manifold J = {Θi = Θ, i = 1, N}. Due to the equality R|J = 1
the dynamics in J is given by the equation

Θ̇ = Δ − K sin Θ (3.5)

and |Δ| < K is the condition of stable synchrony in J (Θ∗ = arcsin Δ
K ). The stability transversal

to J can be derived using variational equations.

4. SUFFICIENT CONDITION FOR PHASE SYNCHRONIZATION
OF THE KURAMOTO OSCILLATORS

Consider for simplicity the case of different constant values of frequency mismatches in (2.7).

The phase synchronization of oscillators is defined as a steady state Θ∗
i (t), i = 1, N such that

|Θ∗
i | � α, i = 1, N, (4.1)

where α is a parameter of phase mismatch in (2.1).
The function R in (2.7) satisfies the condition

1
N

N∑
j=1

(
cos(Θi/2 − Θj)

cos(Θi/2)

)
> 0 for |Θi| <

π

3
, i = 1, N. (4.2)

Now we choose some value of α in (4.1), α < π
3 and obtain the bounds

cos
3α
2

cos−1 Θi

2
< R < cos−1 Θi

2
. (4.3)

Using (4.3), we introduce two auxiliary systems

Θ̇i = Δi − 2K sin
Θi

2
, i = 1, N,

Θ̇i = Δi − 2K cos
3α
2

sin
Θi

2
, i = 1, N

(4.4)

defined in the compact C = {Θ| |Θi| < α, i = 1, N}.
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DYNAMICS OF THE FINITE-DIMENSIONAL KURAMOTO MODEL 41

4.1. Comparison Principle

In order to obtain sufficient conditions for phase synchronization, we use the comparison
principle, which is formulated as follows. Given a system

ẋ = F (x), x = (x1, . . . , xn), F = (F1, . . . , Fn), (4.5)

and a compact C = {x| |xi| � α, i = 1, n}, we introduce the comparison systems

ẋi = F+
i (xi), i = 1, n,

ẋi = F−
i (xi), i = 1, n,

|xi| � α,

(4.6)

where F+
i = sup

|xj |�α
j �=i

Fi(x1, . . . , xn), F−
i = inf

|xj |�α
j �=i

Fi(x1, . . . , xn).

Assumption 1. Assume that F±
i (xi) are continuous functions such that each of them has a unique

zero at the interval [−α,α], xi = β±
i ∈ [−α,α], and F±

i (xi) · (xi − β±
i ) < 0, xi ∈ [−α,α], xi �= β±

i .

Due to these conditions the points β±
i are stable equilibrium points of the comparison

system (4.6). Since F+
i � F−

i , xi ∈ [−α,α], we have β−
i � β+

i , and we introduce a compact
Cβ = {x|β−

i � xi � β+
i , i = 1, . . . , n}, Cβ ⊂ C.

Theorem 1. Let the Assumption 1 hold. Then the system (2.1) has an attractor A lying in the
compact Cβ, and the compact C lies in the basin of the attractor A, A ⊂ Cβ ⊂ C.

Proof. Consider the directing Lyapunov function

V =
n∑

i=1

∣∣∣∣xi −
β+

i − β−
i

2

∣∣∣∣ (4.7)

in the domain C\Cβ. Its derivative with respect to the system (4.5) is

V̇ =
∑

Φi, (4.8)

where

Φi =

{
Fi, if xi ∈ [β+

i , α],
−Fi, if xi ∈ [−α, β−

i ].
(4.9)

Since the inequalities

Fi � F+
i < 0, xi ∈ [β+

i , α], − Fi < −F−
i < 0, xi ∈ [−α, β−

i ] (4.10)

hold, V̇ < 0 for x ∈ C\Cβ. Hence any trajectory of the system (4.5) starting at the initial point
x0 ∈ C\Cβ enters the compact Cβ, and Cβ contains a limiting set – attractor A. �

Corollary 1. There exists at least one equilibrium point of the system (4.5) in the compact Cβ.
This statement follows from the Brouwer fixed point theorem for the map η : x → (x + τF (x)),
where τ > 0 is small enough, since ηCβ ⊂ Cβ.

Corollary 2. The theorem is true in the case when the system (4.5) is nonautonomous. Here the
functions in (4.6) should be replaced with F̃+

i = supt∈R1 F+
i , F̃−

i = inft∈R1 F−
i and a bounded set

At ∈ Cβ × R1 plays the role of the attractor A.
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Using the auxiliary systems (4.4), we compose the comparison systems

Θ̇i = F±
i (Θi) = Δi − KR± sin

Θi

2
, i = 1, N,

R+ =

{
2 for Θi ∈ [−α, 0),
2 cos 3α

2 for Θi ∈ [0, α],

R− =

{
2 cos 3α

2 for Θi ∈ [−α, 0),
2 for Θi ∈ [0, α].

(4.11)

From the comparison principle we derive the following sufficient condition for the Kuramoto
oscillators’ phase synchronization.

Theorem 2. In the parameter range

|Δi| < 2K sinα
(

cos α − 1
2

)
(4.12)

the system (2.1) has an attractor A ⊂ C corresponding to the phase synchronization with the phase
mismatch equal to α.

Proof. The comparison system (4.11) has the stable equilibrium points

β
−(+)
i = 2arcsin Δi(2K)−1, β

+(−)
i = 2arcsin Δi

(
2K cos

3α
2

)−1
(4.13)

for Δi > 0 (Δi < 0, respectively), i = 1, . . . , N . Then the range of the frequency mismatch Δi

is defined by the condition −α < β−
i < β+

i < α, i.e., Cβ ⊂ C. From the critical values β−
i = −α,

β+
i = α we obtain the band |Δi| < 2K cos 3α

2 sin α
2 equivalent to (4.12). �

It is easy to verify that the time dependence of mismatch Δi does not affect the synchronization
range when Δi(t) satisfies (4.12) for any t > 0, i.e., the synchronization mode is insensitive to
bounded perturbations.

5. CONDITION FOR THE ASYNCHRONOUS MODE
OF THE KURAMOTO OSCILLATORS

The asynchrony of oscillators implies the mean increase(decrease) of all phase differences Θi.
From the system (2.10) we obtain a “rough” sufficient condition for such a mode.

Theorem 3. In the parameter range

|Δi| > 2K

all trajectories of the system (2.10) rotate and all N oscillators are asynchronous.

Indeed, in this case Θ̇i > 0 (Θ̇i < 0), i = 1, N due to Eqs. (2.10).

6. NUMERICAL VALIDATION
In this section we provide the results of numerical simulation of the Kuramoto ensemble and

compare them against theoretical estimates obtained previously. Various values of the number of
oscillators N and two kinds of individual frequency distributions were considered throughout the
simulations. The first distribution is linear of the kind ωi = ω0 + i ∗Δ/N , i = 1, N . The second one
is a random uniform distribution in the interval [ω0, ω0 + Δ].

The condition (4.12) gives the relation between the synchronization phase angle α, coupling
K and frequency mismatch Δ. So, in the first numerical experiment we compare the dependency
of α on K for fixed ω0 = 1, Δ = 1. The size of the ensemble N = 100. The results are shown
in Fig. 1. The red curve with circles is obtained numerically, while solid blue is the theoretical
approximation (4.12). First of all, note that for small K there is no synchronization in the system.

REGULAR AND CHAOTIC DYNAMICS Vol. 20 No. 1 2015
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Hence, even the numerical curve breaks here. The corresponding distribution of oscillators over
the phase circle is shown in the inset for K = 0.1. The phases are distributed almost uniformly
over the circle, although some clusters already start to establish themselves, since the coupling is
nonzero. Next, for large values of K the locking angle goes down as expected and the almost exact
correspondence of simulation and theory is observed. However, if we start decreasing K from that
point, then as α increases, the divergence of theory and experiment happens. This is due to the fact
that all the estimations made are valid for α < π/3 and the condition (4.12) has a singularity at this
point (the right-hand side vanishes, which demands infinitely large K in order for the inequality to
hold).

Fig. 1. The dependency of the synchronization phase locking angle α on K. The red-circle line is the numerical
result; the blue curve is the theoretical approximation. The insets represent the distribution of phases over
the unit circle for specified values of K = 0.1, 1, 3, 8.

Now let us compare the synchronization region provided by (4.12) with the exact one obtained
numerically. We consider N = 10, 100 and for each experiment we fix α at some value: π/6, π/12.
Both linear and random distributions are tested. In each experiment for fixed α we vary Δ (ω0 = 1)
and for all of its values we find the K sufficient to provide synchronization in the ensemble within
the angle α. The results are shown in Fig. 2. The two red lines with start markers represent
the synchronization boundary obtained numerically for α = π/6, π/12 and the linear frequency
distribution. The boundaries are linear and the one for α = π/12 has larger K. The curves with
circle and rectangle markers correspond to the upper and lower theoretical margins, respectively
(blue for α = π/6 and red for α = π/12). One can observe that the numerical boundary is always
inside the two theoretical margins. Moreover, the gap is smaller for larger α and smaller Δ. The
overall correspondence between the numerical data and theory is quite good. There are two more
data plots in Fig. 2 with up- and down-triangle markers (no line). These represent the experiments
with random delta distribution for N = 10, α = π/12 and N = 100, α = π/6. It is clearly seen
that they exactly match the red lines, which means that there is no dependency at all on N and
the distribution type. What matters is α. Theoretical approximation (4.12) does not have any
dependency on N and frequency distribution either.

Finally, we find how the coupling strength K depends on α. The numerical result is shown in
Fig. 3 with a magenta curve with square markers. The corresponding lower and upper theoretical
limits on K are plotted as black-star and green-circle curves, respectively. One can see that the
numerical result and both theoretical limits tend to meet each other for low alphas, while the
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Fig. 2. Numerically obtained synchronization regions for α = π/6, π/12 as well as theoretical upper and lower
bounds on critical K. See the text for details.

Fig. 3. The dependency of the critical coupling K on α: the magenta squares represent numerical data; black
stars and green circles are the theoretical lower and upper bounds, respectively. The red triangles represent
the observed relative error, the blue circles correspond to the maximum possible error estimated theoretically.
See the text for details.
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difference becomes more and more significant as α approaches π/3. The relative observed error
between the theoretical synchronization limit (which is its upper bound) and the experimental
critical K is shown as a red-triangle line. The error is almost equal to 1 for small alpha (which
implies exactness of the theoretical approximation there) and grows for larger alpha. We can provide
a theoretical estimate on this relative error: e = cos(α/2)/ cos(3α/2) (this follows from the right-
hand side of the comparison systems). It is shown as a blue-circle curve in Fig. 3. Firstly, the curve
in the graph is always higher than that of the observed error, which means that the estimate is
correct. Secondly, it is remarkable that this relative error depends on α only and does not depend
even on Δ. This means that the theoretical approximation (4.12) can be used for any frequency
distribution with the same relative error.

This result concludes the numerical validation section. We showed here that the main result of
the paper, which is the theoretical condition (4.12), does hold for different N,Δ, α. It approximates
reality almost exactly for small α, while for larger values it has a relative error that depends on α
only. We also gave an estimate on this error.

7. SUFFICIENT CONDITIONS FOR THE CHIMERA STATES
We introduce two parts of oscillators: first Ns, and second Na, N = Ns + Na, and the parameter

μ = Na
N indicating a fraction of the second oscillators in the ensemble. Let us rewrite Eqs. (2.10)

for each part of oscillators in the following form:

Θ̇i = Δ̃i − 2K(1 − μ)

⎡
⎣ 1

Ns

Ns∑
j=1

cos
(Θi

2
− Θj

)⎤
⎦ sin

Θi

2
,

Δ̃i = Δi − 2Kμ

[
1

Na

Na∑
k=1

cos
(Θi

2
− ΘNs+k

)]
sin

Θi

2
, i = 1, . . . , Ns

(7.1)

and

Θ̇i = Δi − 2K

⎡
⎣ 1

N

N∑
j=1

cos
(Θi

2
− Θj

)⎤
⎦ sin

Θi

2
, i = Ns + 1, . . . , N. (7.2)

Due to Theorem 3 the second part of oscillators is asynchronous with respect to the leading
oscillator, regardless of the dynamics of the first part of oscillators, under the condition

|Δi| > 2K, i = Ns + 1, N. (7.3)
Now we obtain a condition for the first part of oscillators to be synchronous with respect to the

leading oscillator. In order to use the comparison principle for the subsystem (7.1), we introduce
the bounds of the terms Δ̃.

Δi − 2Kμ < Δ̃i < Δi + 2Kμ, i = 1, . . . , Ns. (7.4)
Note that these bounds are compatible with (7.3).

Theorem 4. Let both the conditions

|Δi| < 2K
(
(1 − μ) cos

3α
2

sin
α

2
− μ

)
, i = 1, . . . , Ns (7.5)

for the first part of oscillators and the conditions (7.3) for the second part of oscillators hold. Then
the system (2.1) has a chimera state such that first Ns oscillators (including the leading one) are
phase-synchronized, and all the remaining Na oscillators are asynchronous with respect to the first
Ns oscillators.
Proof. Similarly to Theorem 2, we conclude that if the bounds (7.4) are located within the
range (4.12) for i = 1, . . . , Ns, i.e., if the following inequalities hold:

−2K sin
α

2
cos

3α
2

< Δi − 2Kμ, 2K sin
α

2
cos

3α
2

> Δi + 2Kμ, (7.6)

the first part of oscillators is in phase synchronous state with the leading oscillator. The
conditions (7.5) follow from (7.6). �
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7.1. Numerical Proof

In this section we verify the conditions of Theorem 4 by direct simulation of an ensemble of
N = 100 oscillators. We chose μ = 0.1, i.e., there should be 90 oscillators comprising synchronous
clusters as well as 10 asynchronously rotating units alltogether forming a chimera state. The
frequencies of the ensemble are chosen in the following way: (i) the first 90 frequencies are
drawn from uniform random distribution with ωi ∈ [1 : 1 + Δ1]; (ii) the frequencies of the last
10 oscillators are ωi = fi + ξ, where fi are chosen randomly again from [1 : 1 + Δ2] and ξ is the
frequency gap between the first 90 and the last 10 oscillators. With K = 4,Δ1 = 1,Δ2 = 2, ξ = 8
the conditions (7.3) and (7.5) are met and one observes the chimera state in the system according
to the theory. Figure 4 illustrates the chimera state for this parameter set. Firstly, we calculated the
phase differences δϕi(t) = ϕi(t) − ϕ0(t) and then those values are vizualized at the time moments
tn = T0 ∗ n where To is the rotation period of the first oscillator. This strobe plot is shown in
Fig. 4 using blue circles and left axes. One can see that while all δϕi for i < 90 lie inside a fixed
angle implying phase synchronization of those 90 units, other 10 values occupy the whole interval
[0 : 2π], which means that those oscillators rotate with respect to the first oscillator. The individual
frequencies of the oscillators are shown in the same figure with red filled circles using the right axes.
Those frequencies also prove the existence of the chimera state here.

Fig. 4. Chimera state in the Kuramoto system for N = 100, μ = 0.1, K = 4, Δ1 = 1, Δ2 = 2, ξ = 8. The blue
empty circles (left axes) represent a strobe plot of the chimera state and the red filled circles correspond to
the oscillators’ frequencies (see the text for details).

However, in the same system other regimes may be observed for different values of Δ2 and K.
For example, increasing K may lead to global synchronization in the system, while decreasing Δ2
may result in the synchrony inside the last 10 oscillators, thus providing a 2-cluster synchronous
regime. So, a diagram of the dynamical regimes on the parameter plane Δ2,K was calculated in
order to analyze possible transitions between the different states. The diagram is shown in Fig. 5.
Four main dynamical regimes are observed: GS — global synchronization, AS — global asynchrony;
2C — two-cluster regime; CH — chimera state. The frequency distributions for 4 different (Δ2, K)
points (denoted in the plot by (a), (b), (c), (d)) are shown in Fig. 5 (a, b, c, d, respectively). One can
conclude from the diagram that there are 2 different scenarios for transition to the chimera state.
The first one is realized when Δ2 is fixed and is larger than some critical value, while K is being
increased. In this case the transition has the form AS→CH. Further increase of K in this case gives:
CH→2C→GS. An alternative scenario for the chimera state onset is observed when K is fixed and
Δ2 is being increased. Depending on K, two transitions are observed: GS→2C→CH and 2C→CH.
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Fig. 5. The Δ2, K diagram of dynamical regimes in the Kuramoto system with N = 100, μ = 0.1, Δ1 = 1,
ξ = 8. (a) asynchronous state (b) two synchronous clusters (c) synchronous cluster and chimera state (d)
global synchronous state.

In both cases the chimera state sets in after the 2-cluster synchronous regime. Interestingly, the
region occupied by the AS regime does not depend on Δ2. In other words, we cannot observe
synchronization in the last 10 oscillators, while the first 90 are not synchronized (if we could do
it, this would be a chimera with 10 synchronized and 90 rotating units). The unexpected fact that
this is true even for very small Δ2 including Δ2 = 0, i.e., when the last 10 oscillators are identical.
This is because for such small K the 90 oscillators desynchronize the remaining 10 even when the
latter are identical.

8. CONCLUSIONS

In this paper we have studied the global synchronization mode of the finite-dimensional
Kuramoto model. For this purpose we presented a normal form obtained by eliminating the
uncertainty in the original Kuramoto model. We proposed a simple method of comparison, which
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allowed us to obtain an explicit estimate of the phase synchronization range. This estimate is valid
both for constant and time varying frequency mismatch. Detailed numerical simulations confirmed
all theoretical results. Cluster synchronization and chimera states were found. We hope that this
paper provides new insights into cooperative dynamics in oscillatory networks.
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