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Abstract—In this article, we first present the Kustaanheimo – Stiefel regularization of the
spatial Kepler problem in a symplectic and quaternionic approach. We then establish a set
of action-angle coordinates, the so-called LCF coordinates, of the Kustaanheimo – Stiefel
regularized Kepler problem, which is consequently used to obtain a conjugacy relation between
the integrable approximating “quadrupolar” system of the lunar spatial three-body problem
and its regularized counterpart. This result justifies the study of Lidov and Ziglin [14] of the
quadrupolar dynamics of the lunar spatial three-body problem near degenerate inner ellipses.
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1. INTRODUCTION

1.1. Kustaanheimo – Stiefel Regularization

By the use of spinors, an elegant generalization of the Levi-Civita1) regularization of the
planar Kepler problem to the spatial case was made in Kustaanheimo [12] and Kustaanheimo
and Stiefel [11]. Later, quaternionic formulations of this regularization method were presented in
Waldvogel [21] and Saha [18]. The underlying geometry was investigated in Stiefel and Scheifele [19].
Its link with Moser’s regularization [16] of the spatial Kepler problem was investigated in
Kummer [10].

Following a formula in [15], we present a quaternionic formulation of this regularization similar
to [18] (while different from [21]), and investigate its underlying symplectic geometry in this setting.

The Kustaanheimo – Stiefel regularized Hamiltonian always has an additional S1-symmetry
resulting from a Hamiltonian S1-action on the symplectic manifold T ∗(H \ {0}), where H designates
the space of quaternions. The symplecticity of the Kustaanheimo – Stiefel transformation is
explained by the corresponding reduction procedure. We shall further show that, if we restrict
this regularization procedure to the cotangent bundle of some particular 2-planes called Levi-Civita
planes of H, then we recover the Levi-Civita regularization of the planar Kepler problem.

Following some formulae in a course of Chenciner [2], Féjoz in [5] established a set of action-
angle coordinates of the planar Levi-Civita regularized Kepler problem in the regularized phase
space. With the help of the Levi-Civita planes we generalize these coordinates to the spatial case
by further considering the effect of rotations. This set of LCF coordinates is analogous to a set of
canonical coordinates of Levi-Civita [13] in the phase space.

*E-mail: l.zhao@rug.nl
1)Which could be called Goursat – Levi-Civita regularization, as it appears already in [8].
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1.2. Quadrupolar Conjugacy of the Spatial Lunar Three-body Problem

In the perturbative study of the three-body problem, the secular systems are obtained by
successive averaging over the fast, Keplerian angles of the two elliptic orbits of the unperturbed
Keplerian dynamics. These systems are not well-defined when the inner ellipse degenerates, since
the Keplerian fast angles, i.e., the mean anomalies or the mean longitudes, are not well-defined
when one of the elliptic orbits degenerates as for two-body collision-ejection motions.

Nevertheless, it is shown by Féjoz [5] that in the planar three-body problem, the secular systems,
which are integrable due to the presence of the SO(2)-symmetry of rotations, extend analytically to
degenerate inner ellipses. On the other hand, the inner double collisions being regularized, we may
define the secular regularized system by averaging over the resulting fast angles. Moreover, in the
planar case, Féjoz showed that the dynamics of the extended secular systems and that of the secular
regularized systems are closely linked: the dynamics of the secular (Levi-Civita) regularized system
is orbitally conjugate to the dynamics of the extended secular system after being fully symplectically
reduced by the symmetries, provided that a modification of the mass of the outermost body was
made.

The integrability of the secular systems is no longer guaranteed in the spatial three-body
problem. Nevertheless, in the lunar spatial three-body problem where the third body is very far from
the other two, it was noticed by Harrington [9] that the first nontrivial term in the expansion of the
secular system in powers of the semimajor axes ratio (the so-called quadrupolar system) is somehow
accidentally integrable. The fully reduced system by all the symmetries extends analytically near
degenerate inner ellipses, and its dynamics was extensively studied globally first by Lidov and
Ziglin [14].

Notice that the relevance of the quadrupolar dynamics near degenerate inner ellipses in the
study by Lidov and Ziglin with the real dynamics of the lunar three-body problem requires further
justification, since a priori the secular system and the quadrupolar system are not well-defined
by construction. To make such a justification, we construct the quadrupolar regularized system
by the same averaging-truncating procedure in the spatial lunar three-body problem with inner
double collisions regularized by the Kustaanheimo – Stiefel regularization. With the help of the
LCF coordinates we establish the following result in the spatial lunar three-body problem:

Theorem 1. After symplectic reduction of the Keplerian T
2-symmetry and the SO(3)-symmetry

of rotations, the dynamics of the quadrupolar system, being extended to degenerate inner ellipses,
is conjugate to the quadrupolar regularized dynamics up to a constant factor, provided that a
modification of the mass of the outermost body is made.

This result generalizes the result of Féjoz from the planar three-body problem to the spatial
lunar three-body problem, and simultaneously justifies the relevance of the study by Lidov and
Ziglin [14] near degenerate inner ellipses. This is used in [22] to prove the existence of a set of
positive measure of almost-collision orbits in the spatial lunar three-body problem, along which the
inner bodies get arbitrarily close to each other without ever colliding (a slightly different approach
can be found in [23]).

This article is organized as follows: We start in Section 2 by recalling some preliminaries
about quaternions, and then present the Kustaanheimo – Stiefel regularization in Section 3. The
Delaunay-like LCF coordinates, together with their symplecticity are presented in Section 4. Finally,
we investigate the conjugacy relation between the quadrupolar and the quadrupolar regularized
dynamics in Section 5.

2. PRELIMINARIES ON QUATERNIONS

For a quaternion z = z0 + z1i + z2j + z3k ∈ H ∼= R
4, we denote by Re{z} its real part z0 and

by Im{z} its imaginary part z1i + z2j + z3k. A quaternion z of the form z1i + z2j + z3k (i.e., with
vanishing real part) is called a purely imaginary quaternion and can be naturally identified with
the vector (z1, z2, z3) in R

3. This identification enables us to speak of the inner (“·”) and vector
(“×”) products of two purely imaginary quaternions. The product of two quaternions is given by

z w = Re{z}Re{w} − Im{z} · Im{w} + Re{z}Im{w} + Re{w}Im{z} + Im{z} × Im{w}.
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The conjugation z̄ of z is defined by z̄ = z0 − z1i− z2j − z3k. The modulus
√

z · z̄ of a quaternion z
is denoted by |z|.

A quaternion-valued mapping fH : H → H is called differentiable if it is differentiable considered

as a mapping from R
4 to R

4. Its derivative dfH =
∂fH

∂z0
dz0 +

∂fH

∂z1
dz1 +

∂fH

∂z2
dz2 +

∂fH

∂z3
dz3 is a 1-form

having values in R
4. We shall consider it as quaternion-valued via the identification R

4 ∼= H.
Following Sudbery [20], we define the wedge product φH ∧ ψH of two quaternion-valued 1-forms

φH, ψH as:

∀vH, wH ∈ H, φH ∧ ψH(vH, wH) = φH(vH)ψH(wH) − φH(wH)ψH(vH).

We shall only deal with quaternion-valued 1-forms and their wedge products in this article.
Due to the noncommutativity of the quaternion algebra, the exterior product of two quaternion-

valued 1-forms is not antisymmetric in general. In particular, the exterior product of a quaternion-
valued 1-form with itself need not be zero: we find

dz ∧ dz = 2(dz2 ∧ dz3)i + 2(dz3 ∧ dz1)j + 2(dz1 ∧ dz2)k.2)

Nevertheless, it can be directly verified that the real part of the wedge product of two quaternion-
valued 1-forms is symmetric and is independent of the order of the two quaternions involved.

With these notations, the canonical symplectic form on T ∗
H can be written as

Re{dȳ ∧ dx} = −Re{dx̄ ∧ dy},
where x ∈ H, y ∈ T ∗

xH ∼= H are the natural coordinates on the cotangent bundle T ∗
H.

Rotations in R
3 ∼= IH := {z ∈ H : Re{z} = 0} can be represented by unit (i.e., of modulus 1)

quaternions in the following way: Let ρ1 be a purely imaginary quaternion and ρ = cos
θρ

2
+ Im{ρ}

a unit quaternion, then ρ̄ρ1ρ is the purely imaginary quaternion rotated from ρ1 with rotation angle
θρ and rotation axis Im{ρ}. Unit quaternions form a group Spin(3) ∼= SU(2), which is diffeomorphic
to S

3 and doubly covers SO(3) since two unit quaternions ρ and −ρ determine the same rotation.
Note that instead of using special coordinates (e.g., Cayley –Klein parameters etc.) on SU(2) or
SO(3), we shall stick to the use of quaternions, which leads to rather elegant formulae.

3. KUSTAANHEIMO –STIEFEL REGULARIZATION
3.1. Levi-Civita Regularization of the Kepler Problem

Before dealing with the regularization of the spatial Kepler problem, let us first recall the Levi-
Civita regularization of the planar Kepler problem. Complex numbers are enough for our present
purpose in this section; quaternions will appear only in Section 3.2.

The Hamiltonian function of the planar Kepler problem reads

T (P, Q) =
1

2μ0
‖P‖2 +

μ0M0

‖Q‖ , (P, Q) ∈ C × C \ {0}.

For fixed f > 0, we change the time from t to τ on the negative energy hypersurface

{T (P, Q) + f = 0}.
In the new time variable τ , the flow on this energy hypersurface is given by the Hamiltonian function
‖Q‖(T (P, Q) + f).

This is a function which is not even C1 at {Q = 0}. To obtain a system regular at {Q = 0}, we
make use of the Levi-Civita transformation

L.C. : T ∗(C \ {0}) → T ∗
C

(z, w) 	→
(
Q = z2, P =

w

2z

)
.

As (z, w) and (−z,−w) have the same image, this transformation is 2 to 1.

2)Note that our formula differs from [20, Eq. (2.35)] by a factor of 2.
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It is direct to verify that L.C. is symplectic in the sense that

L.C.∗Re(dP̄ ∧ dQ) = Re(dw̄ ∧ dz).

The pull-back of ‖Q‖(T (P, Q) + f) by L.C. is found to be of the form

K(z, w) = L.C.∗(‖Q‖(T (P, Q) + f)) =
1

8μ0
|w|2 + f |z|2 − μ0M0,

which is the Hamiltonian of two harmonic oscillators in 1 : 1 resonance and its dynamics can be
extended regularly to {z = 0} ⊂ C × C which corresponds to the collisions {Q = 0} of the Kepler
problem T (P, Q). Note that it is only on the zero-energy hypersurface (diffeomorphic3) to S

3)
of K(z, w) that its dynamics extends the dynamics of T (P, Q). The compactification of an energy
surface of T (P, Q) determined by this regularization procedure is thus diffeomorphic to the quotient
of S

3 by identifying the antipodal points, which is SO(3).

3.2. Kustaanheimo – Stiefel transformation

We now consider the regularization of the spatial Kepler problem.
By identifying T ∗

H with H × H (the fibers in T ∗
H are identified with the second factor), for

z, w ∈ H, we may consider BL(z, w) := Re{z̄iw} as a function on T ∗
H. The bilinear relation (as it

is called in [19])

BL(z, w) = 0

thus defines a 7-dimensional quadratic cone Σ ∈ H.
We remove the origin from the quadratic cone Σ to obtain a 7-dimensional hypersurface Σ0 :=

Σ \ {(0, 0)} of (T ∗
H, Re{dw̄ ∧ dz}). Since the quadratic cone Σ has index 4, Σ0 is diffeomorphic to

S
3 × S

3 × R. The quotient V 0 of Σ0 by its characteristic foliation, i.e., the foliation by the orbits of
the free circle action

(z, w) 	→ (eiϑz, eiϑw)

is thus a smooth manifold. By standard symplectic reduction, the symplectic form Re{dw̄ ∧ dz}
descends to a symplectic form ω1 on V 0.

Set Σ1 = Σ \ {z = 0} (diffeomorphic to S
3 × R

3 × R). This is a dense open subset of Σ0 and it
is invariant under the above S1-action. Hence, the quotient space V 1 is an open dense submanifold
of V 0. By the same symplectic reduction procedure, the symplectic form Re{dw̄ ∧ dz} descends to
ω1 on V 1.

Definition 1. The Kustaanheimo – Stiefel mapping is
K.S. :T ∗(H \ {0}) → IH × H

(z, w) 	−→
(

Q = z̄iz, P =
z̄iw

2|z|2
)

.

The fibers of this mapping are the circles {(eiϑz, eiϑw), ϑ ∈ R/(2πZ)}. We call the angle ϑ
Kustaanheimo – Stiefel angle. The fibers of K.S. in Σ1 coincide with the leaves of the characteristic
foliation of Σ1, and Σ1 is sent to T ∗(IH \ {0}) by this mapping. One checks that K.S. is surjective
and that the tangent mapping K.S.∗ at every point in Σ1 is surjective and has exactly a one-
dimensional kernel. Therefore, by the inverse function theorem, K.S. induces a diffeomorphism
from the quotient space V 1 to T ∗(IH \ {0}).
Theorem 2. K.S. induces a symplectomorphism from (V 1, ω1) to (T ∗(IH \ {0}), Re{dP̄ ∧ dQ}).

To proof this theorem, it is enough to show that the induced diffeomorphism of K.S. is
symplectic, which is deduced from the following lemma:

3)All diffeomorphisms are considered to be of class C1, unless otherwise stated.
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Lemma 1. (K.S.)∗Re{dP̄ ∧ dQ}|Σ1 = Re{dw̄ ∧ dz}|Σ1.

Proof. The relation BL(z, w) = 0 implies

z̄iw = w̄iz,

which can be equivalently reformulated as

z−1iw = w̄iz̄−1.

By differentiating the last equality, we obtain

d(z−1)iw +
z̄idw

|z|2 =
dw̄iz

|z|2 + w̄id(z̄−1).

From the relation

0 = d(z−1z) = d(z−1)z + z−1dz

we obtain

d(z−1) = −z−1(dz)z−1.

Also, one checks directly that

Im(dz̄i ∧ dz) = 0.

Our aim is to calculate the expression

(K.S.)∗Re
{
dP̄ ∧ dQ

}
= Re

{
d(z−1iw) ∧ d(z̄iz)

}
= −Re

{(
1
2
d(z−1)iw +

z̄idw

2|z|2

)
∧ (dz̄iz+z̄idz)

}
.

By using the relations we have deduced beforehand, we have

Re

{(
1
2
d(z−1)iw +

z̄idw

2|z|2

)
∧ (dz̄iz)

}
= −Re

{
(dz̄iz) ∧

(
1
2
d(z−1)iw +

z̄idw

2|z|2

)}

= Re

{
1
2
dz̄iz ∧ z−1dzz−1iw − dz̄iz ∧ z̄idw

2|z|2

}

= −Re

{
1
2
dz̄i ∧ dzz−1iw

}
− Re

{
dz̄iz ∧ z̄idw

2|z|2

}

=
1
2
Re {dz̄ ∧ dw} .

Re

{(
1
2
d(z−1)iw +

z̄idw

2|z|2

)
∧ (z̄idz)

}
= Re

{(
1
2
w̄id(z̄−1) +

dw̄iz

2|z|2

)
∧ (z̄idz)

}

= −Re

{
1
2
w̄iz̄−1d(z̄)z̄−1 ∧ z̄idz − dw̄iz

2|z|2 ∧ z̄idz

}

= −1
2
Re {dw̄ ∧ dz}

=
1
2
Re {dz̄ ∧ dw} .

Therefore,

(K.S.)∗Re
{
dP̄ ∧ dQ

}
= Re

{
(dz̄iz + z̄idz) ∧

(
1
2
d(z−1)iw +

z̄idw

2|z|2

)}

= −1
2
Re {dz̄ ∧ dw} − 1

2
Re {dz̄ ∧ dw}

= Re {dw̄ ∧ dz} .

�
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By expression, the pull-back (K.S.)∗F (z, w) of a function F ∈ C2(T ∗
IH, R) naturally extends

to a function defined on T ∗
H \ {(0, 0)}. We keep the same notation for the extension.

Proposition 1. For any F ∈ C2(T ∗
IH, R), the space Σ0 is invariant under the Hamiltonian flow

of (K.S.)∗F .

Proof. The S1-action (z, w) 	→ (eiϑz, eiϑw) by the Kustaanheimo – Stiefel angle on T ∗
H \ {(0, 0)} is

generated by the vector field (iz, iw) ∈ T(z,w)T
∗
H \ {(0, 0)}, which is exactly the Hamiltonian vector

field of −BL. Since the function (K.S.)∗F is invariant under this S1-action, the Hamiltonian flow
of (K.S.)∗F and BL commute, and BL is a first integral of the Hamiltonian flow of (K.S.)∗F . �

A Hamiltonian system (T ∗
IH, Re{dP̄ ∧ dQ}, F ) is thus transformed into a Hamiltonian system

(T ∗
H, Re{dw̄ ∧ dz}, (K.S.)∗F ) which keeps Σ0 invariant.

3.3. Regularization of the Spatial Kepler Problem

The Hamiltonian of the spatial Kepler problem with mass parameters (μ0, M0) is of the form

T (P, Q) =
1

2μ0
‖P‖2 +

μ0M0

‖Q‖ ,

where (P, Q) ∈ T ∗(R3 \ {0}) ∼= T ∗(IH \ {0}). We know that all negative energy levels of T (P, Q)
are orbitally conjugate to each other, and the flow is singular at {Q = 0}.

For any f > 0 fixed, we change the time from t to τ such that ‖Q‖ dτ = dt on the negative
energy surface {T + f = 0}. In the new time variable τ , the flow on {T + f = 0} is the (restricted)
Hamiltonian flow of the function ‖Q‖(T + f), in which the velocities remain bounded at the limit
{Q = 0}. Finally, pulling back the Hamiltonian ‖Q‖(T + f) by K.S., we find

(K.S.)∗(‖Q‖(T + f)) = K(z, w) = |z|2(T (P, Q) + f) =
1

8μ0
|w|2 + f |z|2 − μ0M0,

which describes four harmonic oscillators in 1 : 1 : 1 : 1-resonance, and is well defined on the whole
T ∗

H and in particular near the codimension-4 submanifold {z = 0} corresponding to the collisions
of the Kepler problem.

Note that it is only on Σ0 that on its zero-energy hypersurface, the dynamics of K(z, w) extends
the dynamics of the spatial Kepler problem. Reducing by the S1-action of the Kustaanheimo– Stiefel
angle, it defines a regular system on the regularized phase space V 0. The zero-energy submanifold
of the reduced space in V 0 is a compactification of the given Kepler (negative) energy manifold. It
is obtained by adding “at infinity” a 2-dimensional (hence codimension-3) sphere corresponding to
all possible directions of collision.

Lemma 2. The compactification of the energy surface of the spatial Kepler problem determined by
K.S. is diffeomorphic to S

2 × S
3.

Proof. The zero-energy surface of K(z, w) = f |z|2 +
1

8μ0
|w|2 − μ0M0 is diffeomorphic to S

7. Its

intersection with the quadratic cone Σ = {(z, w) : BL(z, w) = 0}, whose index is 4, is diffeomorphic
to S

3 × S
3. The group S1 acts diagonally on the intersection by

ϑ · (x, y) = (eiϑx, eiϑy), ϑ ∈ R/2πZ, (x, y) ∈ S
3 × S

3 ⊂ H × H.

In order to calculate the quotient of S
3 × S

3 by this S1-action, we apply the diffeomorphism
(x, y) → (x, x−1y) from S

3 × S
3 to itself. The diagonal S1-action on the source space S

3 × S
3 induces

an S1-action on the target space

(x, y) 	→ (eiϑx, y), ϑ ∈ R/2πZ.
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The quotient of the first factor S
3 by the S1-fibers of the Hopf mapping

H → IH x 	→ x̄ix

being diffeomorphic to S
2, the quotient of S

3 × S
3 by the S

1-action is thus diffeomorphic to S
2 × S

3.
�

This method of regularizing the collisions of the spatial Kepler problem is called Kustaanheimo –
Stiefel regularization. Let us sum up these discussions by the following diagram:

3.4. Dynamics in the Physical Space

It is only on the regularized zero-energy level that the regularized dynamics extends the Kepler
dynamics after the time has been slowed down. The regularized dynamics with nonzero regularized
energy thus appears to be irrelated to the Kepler problem. Nevertheless, we notice that:

Lemma 3. For any regularized energy f̃ satisfying f̃ > −μ0M0, the projections of the orbits of the
regularized Kepler flow in the physical space are Keplerian ellipses.

Proof. The equation

K =
|w|2
8μ0

+ f |z|2 − μ0M0 = f̃

is equivalent to

‖Q‖
(
‖P‖2

2μ0
− μ0M0 + f̃

‖Q‖ + f

)
= 0,

that is,

‖P‖2

2μ0
− μ0M0 + f̃

‖Q‖ = −f.

By assumption μ0M0 + f̃ > 0. The Hamiltonian flows of the left-hand side in the above equality
and T (P, Q) are thus the same up to time parameterization. Since the orbits of the Keplerian
problem with negative energy are ellipses, the projections in the physical space of the orbits of the
regularized Kepler flow are ellipses as well. �

We call these ellipses KS-ellipses and call the Keplerian ellipses of

T (P, Q) =
‖P‖2

2μ0
− μ0M0

‖Q‖
initial ellipses. From Lemma 3, we see that according to the same initial condition (P, Q), the
KS-ellipse is just the (initial) Keplerian ellipse, after changing the mass M0 of the Kepler problem
to M0 + f̃/μ0.
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3.5. Levi-Civita Planes

In H, the orbits of the regularized Kepler problem K(z, w) lie in planes spanned by two vectors
v1, v2 ∈ H satisfying the bilinear relation BL(v1, v2) = 0. Such a plane is called a Levi-Civita plane.

Lemma 4. Suppose x and y are unit quaternions satisfying BL(x, y) = 0 and 〈x, y〉 = 0, then

x̄ix = −ȳiy, and
1
2
(x̄iy + ȳix) = x̄iy is a unit quaternion linearly independent of x̄ix = −ȳiy.

Proof. The bilinear relation

BL(x, y) = Re{x̄iy} = x̄iy − ȳix = 0

implies

(x̄y − ȳx)(x̄iy − ȳix) = 0,

that is,

|y|2x̄ix + |x|2ȳiy = ȳxȳix + x̄yx̄iy,

2|y|2x̄ix + 2|x|2ȳiy = 2(ȳx + x̄y)(x̄iy + ȳix),

thus,

|y|2x̄ix + |x|2ȳiy = 〈x, y〉(x̄iy + ȳix) = 0.

Since x and y are unit quaternions, (x̄iy + ȳix)/2 = x̄iy is also a unit quaternion. Moreover, since
x and y are linearly independent and x̄i is not zero, x̄ix and x̄iy are also linearly independent. �

Proposition 2. The Hopf mapping
H → IH z 	→ z̄iz

sends a Levi-Civita plane to a plane containing the origin in IH. On the other hand, any plane
containing the origin in IH is exactly the image of a P1-family of Levi-Civita planes.

Proof. The first assertion follows from Lemma 4. To prove the second, let e1, e2 be an orthogonal
basis of a plane in IH. Any rotation sending i to e1 determines a unit quaternion x satisfying
e1 = x̄ix. The unit quaternion y = −ixe2 thus satisfies e2 = x̄iy. Since e2 is purely imaginary,

BL(x, y) = Re{e2} = 0.

Moreover, we have

BL(x, y) = Re{x̄y} = −Re{x̄ixx̄iy} = Re{ē1e2} = 〈e1, e2〉 = 0.

The plane spanned by x and y is thus a Levi-Civita plane.
Once (x, y) is given, the S1 family {(eiϑx, eiϑy), ϑ ∈ R/2πZ} corresponds to the same (e1, e2),

in which the pair (eiϑx, eiϑy) and (eiϑ+iπx, eiϑ+iπy) determine the same oriented Levi-Civita plane.
Therefore, for each oriented two-plane in IH passing through the origin, its preimage is a P1-family
of oriented Levi-Civita planes.

The fibers of the Hopf map are S1-circles each of which intersects a Levi-Civita plane at 0 or 2
points. Therefore, the preimage of any plane in IH consists exactly in a P1-family of Levi-Civita
planes. �

An important relation between the Kustaanheimo – Stiefel transformation and the usual Levi-
Civita transformation (L.C.) is the following:

Proposition 3. Given a Levi-Civita plane E, there exist identifications to C of E and of its image
under the Hopf map, which make the restriction of the Hopf map into the form

C → C, z 	→ z2.

Moreover, the restriction of K.S. to T ∗E becomes

L.C. : T ∗
C → T ∗

C, (z, w) →
(
z2,

w

2z

)
.
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Proof. Let z = c1r1 + c2r2, w = c3r1 + c4r2 ∈ E ⊂ H, where c1, c2, c3, c4 ∈ R, r1, r2 ∈ E are two unit
orthogonal quaternions. The Hopf map sends z into

(c2
1 − c2

2)r̄1ir1 + 2c1c2r̄2ir2,

K.S. sends (z, w) into(
(c2

1 − c2
2)r̄1ir1 + 2c1c2r̄2ir2,

(c1c3 + c2c4)r̄1ir1 + (c1c4 − c2c3)r̄2ir2

2(c2
1 + c2

2)

)
.

It is thus enough to make the identifications r1 ∼ v̄air1 ∼ 1, r2 ∼ v̄bir2 ∼ i. �
The restriction of the Kustaanheimo – Stiefel regularized Kepler problem to the cotangent bundle

of a Levi-Civita plane is thus just the Levi-Civita regularized Kepler problem.

4. LCF COORDINATES
4.1. Planar Case

Let us first recall a set of Delaunay-like action-angle coordinates of the Levi-Civita regularized
planar Kepler problem (that we have presented in Section 3.1) obtained in [5]. In this subsection,
the variables z, w are complex numbers instead of being quaternions.

We first switch to the symplectic coordinates

(W, Z) =
(

w
4
√

8μ0f
, 4
√

8μ0fz

)
,

in which the function K = K(z, w) is transformed into

K =

√
f

8μ1
(|Z|2 + |W |2) − μ0M0.

To diagonalize the associated Hamiltonian vector field, we set

(W, Z) =
(

W ′ + Z̄ ′
√

2
,
W ′ − Z̄ ′

i
√

2

)
.

In (W ′, Z ′) coordinates

K =

√
f

8μ1
(|Z ′|2 + |W ′|2) − μ0M0,

and the symplectic form is transformed to
i

2
(dW ′ ∧ dW̄ ′ + dZ ′ ∧ dZ̄ ′).

We further switch to polar symplectic coordinates (ra, θa, rb, θb) defined by

(Z ′, W ′) =
(√

2rae
iθa ,

√
2rbe

iθb

)
.

In these coordinates, we have

K =

√
f

2μ1
(ra + rb) − μ0M0.

Finally, we set

(L, δ,G, γ) =
(

ra + rb

2
, θa + θb,

ra − rb

2
, θa − θb + π

)
.

We have in these coordinates

K = L

√
2f

μ0
− μ0M0,

and the symplectic form is transformed into the form dL ∧ dδ + dG ∧ dγ. As has been remarked
in [5], the translation by π in the definition of γ is due to the reason that one considers the argument
of the pericenter of an ellipse rather than its apocenter.
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4.2. Spatial Case

Following [4], we define the diffeomorphism kf from V 0 to itself by the following formula:

kf : (P, Q) 	→
(

P ′ =
P√

2μ0fL
, Q

)
,

so that the ellipse determined by (P, Q) in the physical space under the flow of the regularized
Hamiltonian K(z, w) coincides with the ellipse determined by (P ′, Q) under T (P, Q). We note that
in the above formula, (P, Q) does not determine (P ′, Q) uniquely since L, as part of the Delaunay
coordinates defined below, is related to the Keplerian energy of the corresponding KS-ellipses with
regularized energy f̃ , which corresponds to a modification of the masses by f̃ (Lemma 3 and
discussions below it). In particular,

√
2μ0fL = 1 if and only if f̃ = 0.

Identifying the space of spatial Keplerian ellipses of fixed semimajor axis, possibly circular or
degenerate (to a line segment), to S

2 × S
2 (see [1, Lecture 4]), the mapping kf induces the identity

mapping from S
2 × S

2 to itself. However, the mass parameters of the source and the target not
being necessarily the same, the associated symplectic forms on the source and target spaces do not
necessarily agree, hence the identity mapping of S

2 × S
2 is not symplectic in general.

Let a, e, i be, respectively, the semimajor axis length, the eccentricity and the inclination4) of
an elliptic solution of the Kepler problem with Hamiltonian T (P, Q). In terms of the (symplectic)
Delaunay coordinates (L, l, G, g, H, h), for which

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L = μ0

√
M0

√
a circular angular momentum

l mean anomaly

G = L
√

1 − e2 angular momentum

g argument of pericenter

H = G cos i vertical component of the angular momentum

h longitude of the ascending node,

and in terms of the diffeomorphism kf , we define the LCF coordinates, seen as coordinates on
an open subset Ṽ 1 of the regularized phase space V 0 determined by the conditions that the
corresponding KS-ellipse is nondegenerate (in this case, even if l is replaced by u in this set of
coordinates, the orbital plane is nevertheless not well-defined), noncircular and nonhorizontal, as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L =
√

2fL2

μ
3/2
0 M0

◦ kf

δ = u ◦ kf , where u is the eccentric anomaly

G =
√

2fLG

μ
3/2
0 M0

◦ kf

γ = g ◦ kf

H = H

ζ = h.

4)The use of the same i for the inclination and for the imaginary unit should not cause any ambiguity for the
readers.
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On the energy surface K(z, w) = 0, we have f =
μ3

0M
2
0

2L2
, therefore, kf induces an identification

of the Delaunay coordinates with the corresponding LCF coordinates

L = L ◦ kf , δ = u ◦ kf , G = G ◦ kf , γ = g ◦ kf , H = H, ζ = h.

(except for the fast angle, which is the eccentric anomaly u in LCF coordinates and the mean
anomaly l in Delaunay coordinates).

To obtain a simple proof of the symplecticity of the LCF coordinates, we shall use the following
“rotation lemma”:

Let RI
1 be the simultaneous rotation in each factor of R

3 × R
3 around the first axis with angle

I, and let Rh
3 be the simultaneous rotation in each factor of R

3 × R
3 around the third (“vertical”)

axis with angle h. Let

(x′
1, x

′
2, x

′
3, y

′
1, y

′
2, y

′
3) = Rh

3 ◦ RI
1(x1, x2, 0, y1, y2, 0).

Lemma 5 (Rotation Lemma).

dy′1 ∧ dx′
1 + dy′2 ∧ dx′

2 + dy′3 ∧ dx′
3 = dy1 ∧ dx1 + dy2 ∧ dx2 + d(x′

1y
′
2 − x′

2y
′
1) ∧ dh.

Proof. An elementary calculation leads to

dx′
1 ∧ dy′1 + dx′

2 ∧ dy′2 + dx′
3 ∧ dy′3 = dx1 ∧ dy1 + dx2 ∧ dy2 + dh ∧ d((x1y2 − x2y1) · cos I)

= dx1 ∧ dy1 + dx2 ∧ dy2 + dh ∧ d(x′
1y

′
2 − x′

2y
′
1).

�

By Proposition 2, the mapping K.S. restricts to L.C. on the cotangent bundle of a Levi-Civita
plane. Since (L, δ,G, γ) form a set of Darboux coordinates, we deduce from Lemma 5 that

Proposition 4. LCF coordinates form a set of Darboux coordinates on Ṽ 1.

Remark 1. Starting with a formula of [2], the set of coordinates (L, δ,G, γ) was established and
was called “Delaunay-like coordinates” in [5]. On the other hand, a set of closely related Darboux
coordinates of the (nonregular) phase space has been built by Levi-Civita in [13] both in the planar
and the spatial cases with a very different approach. The abbreviation LCF stands for Levi-Civita,
Chenciner, and Féjoz.

Note that LCF coordinates, similarly to the Delaunay coordinates, are not well-defined for
collision-ejection Keplerian motions: there is no well-defined “orbital plane” for a degenerate ellipse.

Remark 2. As another application of Lemma 5, we may deduce the symplecticity of the spatial
Delaunay coordinates (L, l, G, g, H, h) from that of the planar Delaunay coordinates (L, l, G, g):
indeed, from dy1 ∧ dx1 + dy2 ∧ dx2 = dL ∧ dl + dG ∧ dg, and by definition of H = x′

1y
′
2 − x′

2y
′
1, one

gets from Lemma 5 that

dy1 ∧ dx1 + dy2 ∧ dx2 + dy3 ∧ dx3 = dL ∧ dl + dG ∧ dg + dH ∧ dh.

5. AVERAGING AND REGULARIZATION

5.1. Jacobi Decomposition of the Spatial Three-body Problem

The spatial three-body problem is a Hamiltonian system on the phase space

Π :=
{
(pj , qj)j=0,1,2 = (p1

j , p
2
j , p

3
j , q

1
j , q

2
j , q

3
j ) ∈ (R3 × R

3)3| ∀0 � j �= k � 2, qj �= qk

}
,

with the (canonical) symplectic form
2∑

j=0

3∑
l=1

dpl
j ∧ dql

j ,
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and the Hamiltonian function

F =
1
2

∑
0�j�2

‖pj‖2

mj
−

∑
0�j<k�2

mjmk

‖qj − qk‖
,

in which q0, q1, q2 denote the positions of the three particles, and p0, p1, p2 denote their conjugate
momenta, respectively. The Euclidean norm of a vector in R

3 is denoted by ‖ · ‖. The gravitational
constant has been set to 1.

The Hamiltonian F is invariant under the translations in positions. To reduce the system by
this symmetry, we switch to the Jacobi coordinates (Pi, Qi), i = 0, 1, 2, defined as

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

P0 = p0 + p1 + p2

P1 = p1 + σ1p2

P2 = p2

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Q0 = q0

Q1 = q1 − q0

Q2 = q2 − σ0q0 − σ1q1,

where
1
σ0

= 1 +
m1

m0
,

1
σ1

= 1 +
m0

m1
.

Due to the symmetry, the Hamiltonian function is independent of Q0. We fix the first integral
P0 (conjugate to Q0) at P0 = 0 and reduce the translation symmetry of the system by eliminating
Q0. In coordinates (Pi, Qi), i = 1, 2, the (reduced) Hamiltonian function F = F (P1, Q1, P2, Q2) thus
describes the motion of two fictitious particles.

We further decompose the Hamiltonian F (P1, Q1, P2, Q2) into two parts F = FKep + Fpert, where
the Keplerian part FKep and the perturbing part Fpert are, respectively,

FKep =
‖P1‖2

2μ1
+

‖P2‖2

2μ2
− μ1M1

‖Q1‖
− μ2M2

‖Q2‖
,

Fpert = −μ1m2

[
1
σo

(
1

‖Q2 − σ0Q1‖
− 1

‖Q2‖

)
+

1
σ1

(
1

‖Q2 + σ1Q1‖
− 1

‖Q2‖

)]
,

with (as in [6])
1
μ1

=
1

m0
+

1
m1

,
1
μ2

=
1

m0 + m1
+

1
m2

,

M1 = m0 + m1, M2 = m0 + m1 + m2.

We shall only be interested in the region of the phase space where F = FKep + Fpert is a small
perturbation of a pair of Keplerian elliptic motions with non-intersecting orbits.

5.2. Regularized Hamiltonian

We now apply the Kustaanheimo – Stiefel regularization to regularize the inner double collisions
‖Q1‖ = 0 of the system F .

We fix a negative energy surface

F = −f < 0,

and switch to a new time variable τ which satisfies

‖Q1‖ dτ = dt.

In time τ , the corresponding motions of the particles are governed by the Hamiltonian ‖Q1‖(F + f)
and lie inside its zero-energy level. From now on, we will call K.S. the mapping

(z, w, P2, Q2) 	→
(

Q1 = z̄iz, P1 =
z̄iw

2|z|2 , P2, Q2

)
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and set

F = (K.S.)∗ (‖Q1‖ (F + f)) .

This regularized Hamiltonian is a well-defined function on Σ0 × T ∗(R3 \ {0}) and is decomposed as

F = FKep + Fpert,

where the regularized Keplerian part

FKep = K.S.∗
(
‖Q1‖(FKep + f)

)
=

|w|2
8μ1

+
(

f +
‖P2‖2

2μ2
− μ2M2

‖Q2‖

)
|z|2 − μ1M1

describes the skew-product motion of the outer body moving on an Keplerian elliptic orbit, slowed
down by four “inner” harmonic oscillators in 1 : 1 : 1 : 1-resonance, and the regularized perturbing
part

Fpert = K.S.∗
(
‖Q1‖Fpert

)

is small. Both terms extend analytically through the set {z = 0} corresponding to inner double
collisions of F .

The function F descends to a function (still called F) on V 0 \ {0} × T ∗(R3 \ {0}) that we shall
deal with in the sequel.

5.3. The Quadrupolar System and its Regularized Counterpart

Due to the proper degeneracy of FKep (that all bounded orbits of the Kepler problem are closed),
to carry out perturbative studies of FKep, we must understand the dynamics of the secular system

Fsec =
1

4π2

∫

T2

Fpertdl1dl2,

in which l1, l2 are the mean anomalies of the inner and outer ellipses, respectively. The system
Fsec has 6 degrees of freedom and has the Keplerian T

2 and the rotational SO(3)-symmetry. In
particular, it is not a priori integrable.

We now consider the lunar case of the three-body problem, that is, when the ratio of the
semimajor axes α =

a1

a2
is sufficiently small, with a1 and a2 being the semimajor axes of the inner

and outer ellipses, respectively. We suppose, in addition, that both the inner and outer ellipses are
noncircular and nondegenerate, so that we may use the Delaunay coordinates

(Li, li, Gi, gi, Hi, hi), i = 1, 2

to describe them, respectively.
The function Fpert is naturally an analytic function of a1, a2, Q1/a1, Q2/a2 (by replacing Qi by

ai
Qi

ai
, i = 1, 2). With the substitution a2 =

a1

α
, it is also an analytic function of a1, α, Q1/a1, Q2/a2.

By expanding Fsec in powers of α, we find

Fsec = Fquad α3 + O(α4),

where, as noticed by Harrington [9] that if we perform the standard Jacobi elimination of the nodes,
that is, to fix the total angular momentum vertically having norm C (one has therefore h1 = h2 + π
and H1 + H2 = C) and to reduce by the S1-symmetry of rotations around the vertical axis (so as
to ignore the angles h1, h2 ), the (reduced) quadrupolar system

Fquad = −m0m1m2

m0 + m1

L3
2

8a1G3
2

{
3
G2

1

L2
1

[
1 +

(C2 − G2
1 − G2

2)
2

4G2
1G

2
2

]

+ 15
(

1 − G2
1

L2
1

)[
cos2 g1 + sin2 g1

(C2 − G2
1 − G2

2)
2

4G2
1G

2
2

]
− 6

(
1 − G2

1

L2
1

)
− 4

}
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is integrable, since it is also independent of the outer argument of the perihelion g2. The dynamics
of Fquad was investigated by Lidov and Ziglin [14] and later by Ferrer and Osacar [7], Farago and
Laskar [3], and Palacián, Sayas and Yanguas [17].

By construction, the system Fquad is not defined when the inner ellipse degenerates since the
angle l1 is not defined for a degenerate inner ellipse. Nevertheless, we notice that

Proposition 5 (Appendix). Fquad extends analytically to degenerate inner ellipses.

The extended quadrupolar dynamics near degenerate inner ellipses was studied in Lidov and
Ziglin [14], but it is not a priori clear that this particular part of their study is really relevant to
the dynamics of the three-body problem.

Towards a better understanding of the situation, let us first construct the secular systems of
the regularized system. We suppose that the inner ellipse is noncircular, and the outer ellipse
is noncircular and nondegenerate. As in [23], the secular regularized system Fsec is obtained
analogously by averaging Fpert over the fast angles δ1 (the angle δ in the LCF coordinates adapted
for the inner body) and l′2 = l2 + f ′

1(L2)
2f1(L2)

Re{P̄1Q1} (see [5]; the modification was made to keep the
symplectic form and to have the angle l′2 to be proportional to the new time τ). We obtain from
Fsec the quadrupolar regularized system Fquad by analogous expansion and truncation procedures.

We aim to compare the (integrable) dynamics of Fquad and Fquad, in which the former is well-
defined near degenerate inner ellipses by construction and the latter is not, but extends analytically
to degenerate inner ellipses. In the planar three-body problem, a similar situation arises and the
dynamics of the regularized secular system is shown to be orbitally conjugate to the extended
dynamics of the secular system [5]. A similar result can be established in our situation as well.

Let us first extend the diffeomorphism kf defined in Section 4.2 (but keep the same notation)
by only applying it to the inner body:

kf : (P1, Q1, P2, Q2) 	→
(

P1√
2μ1f1(L2)L1

, Q1, P2, Q2

)
.

Proposition 6. The initial and secular regularized Hamiltonians satisfy:
Fsec = a1 · Fsec ◦ kf .

Proof. This is a direct generalization of [5, Proposition 3.1] to the spatial case. Observing that two
elliptic orbits are fixed, we have dδ1 ∧ dl2 = dδ1 ∧ dl′2 and thus

Fsec =
1

4π2

∫

T2

Fpertdδ1dl′2

=
1

4π2

∫

kf (T2)
Fpert ◦ k−1

f d(δ1 ◦ k−1
f )dl2.

Since the map kf preserves the configuration coordinates (Q1, Q2) and Fpert = ‖Q1‖Fpert is only
a function of the configuration variables, Fpert = ‖Q1‖Fpert is invariant under kf . Moreover,
δ1 ◦ k−1

f = u1, therefore,

Fsec =
1

4π2

∫

T2

‖Q1‖Fpertdu1dl2

=
a1

4π2

∫

T2

Fpertdl1dl2

= Fsec.

The last equality follows from the relation
‖Q1‖ du1 = a1dl1,

derived from the Kepler equation
l1 = u1 − e1 sinu1.

�
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We thus obtain

Fquad = a1 · Fquad ◦ kf .

Unfortunately, the mapping kf is not symplectic for the secular symplectic structures involved,
hence the dynamics of Fquad is not directly equivalent to that of Fquad. Nevertheless, the following
theorem gives a direct and simple link between them.

Theorem 3. For fixed masses m0, m1 and m2, semimajor axes a1 � a2, energy −f < 0, and
angular momentum C, after full reduction by the SO(3)-symmetry and the Keplerian T

2-action of
the fast angles, there exists a fictitious value m′

2 > 0 of the outer mass, such that up to a factor
depending only on a1 and the masses m2 and m′

2, the system Fquad is conjugated to Fquad, provided
that m′

2 substitutes for m2 in Fquad.

Proof. We fix �C vertical, so that by standard Jacobi’s elimination of the nodes, (G1, γ1, G2, g2) form
a set of Darboux coordinates on the reduced source space of kf , and (G1, g1, G2, g2) form a set of
Darboux coordinates on the reduced target space of kf .

Consider the system

F = FKep + Fpert = −μ3
1M

2
1

2L2
1

− μ3
2M

2
2

2L2
2

+ Fpert

on the energy level

F = −f, f > 0.

Since for small enough α, |Fpert| is smaller than
μ3

2M
2
2

2L2
2

, we have that

μ3
1M

2
1

2L2
1

< f.

Now as the mapping

m2 	→ μ3
2M

2
2 =

(m0 + m1)3m3
2

m0 + m1 + m2

is a diffeomorphism from (0, +∞) to itself for any positive m0, m1, there exists some m′
2 > 0, such

that

f1(L2, m0, m1, m
′
2) = f − μ3

2M
2
2

2L2
2

=
μ3

1M
2
1

2L2
1

.

The composition of the mapping kf with the mapping m : m2 	→ m′
2 is thus just the identity

between L1 and L1, and between two Darboux charts (G1, γ1, G2, g2) and (G1, g1, G2, g2) in the
reduced source and target spaces of spatial Keplerian ellipses,5) respectively. Moreover, since these
charts are open and dense in the source and target spaces, we conclude that this composition
identifies the reduced source and the target space symplectically.

We deduce from Fquad = a1 · Fquad ◦ kf and the expression of Fquad that

m′
2

m2
Fquad = Fquad ◦ m = a1 · Fquad ◦ kf ◦ m.

Hence the dynamical behavior of the reduced quadrupolar regularized system agrees, up to a factor
a1m2

m′
2

, with that of the nonregularized reduced quadrupolar system. �

5)Remind that circular inner or outer orbits or degenerate outer orbits are removed.
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Therefore, the study by Lidov and Ziglin [14] of Fquad near degenerate inner ellipses is indeed
relevant to the regularized secular dynamics of the spatial lunar three-body problem in the way
manifested by Theorem 3. In [22], this is used in an essential way to establish the existence of
almost-collision orbits in the spatial lunar three-body problem.

Remark 3. The necessity of shifting one of the masses in the above theorem is due to the
possibly nonzero energy of the regularized system. Instead of modifying the outer mass m2, another
possibility is to modify the masses m0 and m1. This is explored in [23].

APPENDIX. ANALYTIC EXTENSION OF Fquad TO DEGENERATE INNER ELLIPSES

In this appendix, we show by direct calculation that

Proposition 7. The function Fquad extends to an analytic function in a neighborhood of degenerate
inner ellipses.

Proof. The space of the (inner) spatial Keplerian ellipse is homeomorphic to S
2 × S

2 (see,
e.g., [1, Lecture 4]). The Pauli – Souriau coordinates for the inner spatial Keplerian ellipse
(A1, A2, A3, B1, B2, B3) with

A2
1 + A2

2 + A2
3 = B2

1 + B2
2 + B2

3 = L1

are just the Descartes coordinates for a couple of points on S
2
L1

⊂ R
3 (we set the radius of the sphere

S
2
L1

to be
√

L1). The angular momentum of the inner ellipse is then �C1 =
(

A1−B1
2 , A2−B2

2 , A3−B3
3

)
,

the direction of the inner pericenter is the direction of
(
−A1+B1

2 ,−A2+B2
2 ,−A3+B3

3

)
, and the

direction of the inner ascending node is the direction of
(

B2−A2
2 , A1−B1

2 , 0
)
.

A calculation leads to

Fquad =
μ1m2

2α3

∫

T2

‖Q1‖2

‖Q2‖3
(3 cos2 ζ − 1)dl1dl2.

We take the Laplace plane, the plane orthogonal to �C, to be the reference plane. In terms of
(e1, g1, i1, e2, i2) (for which we restrict ii to the interval [0, π) ), this function takes the form

Fquad = − μ1m2

8a1(1 − e2
2)

3
2

[3(1 − e2
1)(1 + cos2(i1 − i2)) + 15(cos2 g1 + cos2(i1 − i2) sin2 g1) − 6e2

1 − 4]

= − μ1m2

8a1(1 − e2
2)

3
2

[−(3(1 − e2
1) + 15 sin2 g1) sin2(i1 − i2) + 12(1 − e2

1) + 5].

We see from this expression that the analyticity of (the extension of) Fquad near degenerate inner
ellipses directly follows from the analyticity of (the extensions of) the expressions (1− e2

1) sin2(i1 −
i2) and sin2 g1 sin2(i1 − i2) near degenerate inner ellipses. In Pauli – Souriau coordinates and in
terms of the normal vector of the outer ellipse �N2 = (N1, N2, N3), these expressions can be written
as

(1 − e2
1) sin2(i1 − i2) =

1
4L2

1

(A1 − B1)2 + (A2 − B2)2 + (A3 − B3)2

−
(
(A1 − B1)N1 + (A2 − B2)N2 + (A3 − B3)N3

)2
,

sin2 g1 sin2(i1 − i2) =
((A1 + B1)N1 + (A2 + B2)N2 + (A3 + B3)N3)2

(A1 + B1)2 + (A2 + B2)2 + (A3 + B3)2
.

These formulae show that they can be extended analytically to the set

{(A1, A2, A3) = (B1, B2, B3)},
corresponding to degenerate inner ellipses. This shows that Fquad can be extended analytically to
degenerate inner ellipses. �
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Remark 4. We provide a geometrical way to calculate the expression

sin2 g1 sin2(i1 − i2).

Take any vector �p in the direction of the inner pericenter and its projection �p1 in the outer orbital
plane. Let �p2 be the projection of �p to the direction of the node. It is direct to verify that the
direction of the node is perpendicular to �p1 − �p2. We have

sin2 g1 =
‖�p − �p2‖2

‖�p‖2

and

sin2(i1 − i2) =
‖�p − �p1‖2

‖�p − �p2‖2
,

therefore,

sin2 g1 sin2(i1 − i2) =
‖�p − �p1‖2

‖�p‖2
.

This is a quantity which only depends on the direction of the inner pericenter and the normal
direction of the outer orbital plane, while both directions are well defined up to degenerate inner
ellipses.
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PhD thesis, Université Paris-Diderot, 2013.

23. Zhao, L., Quasi-Periodic Almost-Collision Orbits in the Spatial Three-Body Problem, Comm. Pure Appl.
Math. (in press). doi 10.1002/cpa.21539

REGULAR AND CHAOTIC DYNAMICS Vol. 20 No. 1 2015




