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Abstract—We study the behavior of reduced radial wave function at the origin for multidimensional Schro-
dinger equation, where the angular variables are separated by using a hyperspherical formalism and the overall
potential is chosen symmetric under rotations in full Euclidean space. It is shown that the rigorous restriction
at the origin—Dirichlet boundary condition follows only in three-dimensional space, whereas in other
dimensions (more than three) some physical reasonings are necessary in addition. According to our previous
investigation the most appropriate is the Hermiticity of Hamiltonian or, equivalently, the conservation of par-
ticle number. In this case the preferable is a Dirichlet condition again for regular potentials, but for singular
potentials (not soft) other conditions are also allowed together with it. In this meaning the three dimensions
is a peculiar one.
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1. INTRODUCTION
During the last decades, number of papers have

appeared about the Schrodinger equation in multi
D-dimensional spaces [1–6]. For reduction of such a
problem, usage of the hyperspherical formalism is the
most expedient. It is noteworthy that besides the
mathematical interest, this formalism has been suc-
cessfully applied to various realistic physical problems,
such as many particles problem, when particles are
placed in  dimensional Euclidian space
[7, 8]. By its meaning  dimensions have some
important peculiarities in comparison to 3-dimen-
sions. Here the central symmetry means the using
some collective potential, which has a symmetry con-
cerning rotations relative to full -dimensional space.
Owing to that in the hyperspherical basis the separa-
tion of variables takes place and the one dimensional
Schrodinger equation is derived with respect to a
hyperradial variable leaving some traces of hyper-
spherical angles.

Multidimensional central potentials with a specific
analytical form have been used [1–6] to interpret a
number of physical phenomena and chemical pro-
cesses, to explain the behavior of nanotechnological
systems, etc.

The objective of the present article is to focus on
special features of quantum mechanics in higher
dimensions, specifically on the behavior of the radial
wave function at the origin of coordinates. As well as

we are dealing with a second order differential equa-
tion, to impose the suitable boundary conditions is
necessary for determination the structure of spectra.
Our aim in this article is not an application of this
equation in some physical problems, which are con-
sidered already in sufficiently details (see, [1–8], and
references there’ in), but we want take attention only
to one particular problem—the behavior of reduced
wave function at the origin of coordinates. In all above
mentioned papers, the boundary condition is postu-
lated as a requirement for physical solution, but it is
not specified which physical solution is taken into
account. This problem will be considered below after
remaining the main equations.

2. PRELIMINARIES
In arbitrary -dimensions with hypercentral

potential  the Schrodinger equation has the form
[1] (  units are chosen):

(1)

where r is a -dimensional position vector, whose
hyperspherical coordinates are  and 
is a hyperradius, denoting the radial distance
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By VD(r) it is meant a “collective” (but not a pair)
potential, which depends only on . The Laplacian of
this problem is expressed as

(3)

where  is a generalized squared angular momen-
tum operator in -dimensions. It obeys to the follow-
ing equation

(4)

Here  describes hyper spherical harmon-
ics, which are characterized by quantum numbers

. They are natural
numbers  

 and these objects obey to orthog-
onality conditions

(5)

Substituting

(6)

and accounting for (4), (5), it follows a hyperradial
equation

(7)

We see that by external view this equation does not
differ from usual 3-dimensional radial equation,
moreover it passes into it in case of . Therefore,
we can study them in parallel to each other.

It is a usual practice to withdraw a first derivative
term, which can be achieved by substitution

(8)

After this, the equation reduces to the form

(9)

where

(10)

and  is a “Grand orbital quantum number” or
“hyperangular momentum”
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Therefore,

(12)

As it is mentioned in literature, the physical solu-
tions require that , when . Moreover,
the normalization to unity of the total wave function
leads to the following property of the reduced radial
wave function :

(13)

Nevertheless, there is not specified which are the
physical solutions, that guarantee such boundary
behavior. Our aim is to establish under which physical
conditions follows the above mentioned boundary
behavior at the origin of coordinates. We see from
Eqs. (9) and (10) that the Schroedinger equation
describes the one-dimensional non-relativistic
motion of a particle. It is worth noting that the D-
dimensional Schrodinger equation is formally the
same as the radial equation in three-dimensional case,
but with the grand orbital momentum . It has an
essential difference because the grand orbital momen-
tum  never vanishes in spaces of higher 
dimensions, so the s-wave problem [9] does not arises
here. The particle is subjected to the natural force
coming from the potential  and two additional
forces (10) with different physical origin: the centrif-
ugal force associated with a nonvanishing hyperan-
gular momentum, and a quantum fictitious force,
associated to the quantum-centrifugal potential

 of purely dimensional origin. If we
rewrite Eq. (10) in more transparent form as:

(14)

it is seen that the effective potential depends on  and
 through a special combination . Therefore, it

appears that there is the interdimensional degeneracy
phenomenon; this implies e.g., that for an arbitrary
potential the energies of the 7-dimensional s-states are
the same as those of the 5-dimensional p-states or the
3-dimensional d-states.

3. WAVE UNCTION’S BEHAVIOR 
AT THE ORIGIN OF COORDINATES

Let us mention that in 90th of the previous century
the problem of self-adjointness of the reduced radial
Hamiltonian in 3-dimensions was a subject of inten-
sive considerations [10]. It is well known that the self-
adjointness by itself is connected to the behavior of
reduced wave function at the origin. Various possibili-
ties (choice) of boundary conditions were considered,
but the final agreement was not established, especially
for singular potentials. Among them was the above
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mentioned zero asymptotic (Dirichlet), but the prob-
lem of s-wave remained open. Some authors believed
that the so-called Robin boundary condition [11]
became preferable. We have previously proved [12]
that the Dirichlet boundary condition appears to be
unique for the reduced  function. The reason is
the delta-like singularity, which appears in the Lapla-
cian during the course of transition from total to
reduced wave function. It is interesting to know if there
is a such situation in multi dimensions.

As it was noted above, the multi-dimensional
equation reduces to the 3-dimensional one after sub-
stitution , when  and we have for total
radial function the equation:

(15)

while the transformation (6) reads as: 
or .

After this substitution it follows that the radial part

of Laplacian  acts on the factor :

(16)

The last term cancels the first derivative term in the
first parenthesis and there remains

(17)

In consequence, the extra delta term arises in radial
Laplacian and the equation for a reduced wave func-
tion takes the form

(18)

The only way to avoid this extra term to derive the
well-known equation for the reduced wave function is
to impose a constraint . Otherwise, we would
force to include a delta like term in all potentials under
consideration, which is physically meaningless. Only
after using this constraint, which has a form of Dir-
ichlet boundary condition, we return to the generally
accepted reduced equation. Moreover, this fact is valid
irrespective whether the potential is regular or singular
and the problem of self-adjointness of reduced Ham-
iltonian is also solved automatically.
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gous phenomenon does not occur, because in
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D-dimensions delta function appears in the following
equation [13]

(19)

and the substitution (8) has nothing in common with
this equation, except for . So, in multidimen-
sional case there is no strong rigorous mathematical
argument in favour of .

Therefore, the following question arises: Is it possi-
ble, with the help of some regular steps to derive phys-
ically acceptable boundary condition for ? To
address this problem let us draw other physical sugges-
tions, considered e.g., in [12], which can also be trans-
ferred to  spaces.

Usually, the consideration is rest on the normaliza-
tion integral (13) and attempts to find maximal singu-
lar behavior at the origin, allowed by this condition
and with the fundamental principles of quantum
mechanics. In [12] we have considered some more
common physical reasonings and saw that different
physically acceptable arguments lead to diverse con-
clusions for the wave function behavior at the origin.

What happens in  dimensions?
From the continuity of  at the origin, accord-

ing to (8) it follows , insuring a finite proba-
bility at this point. Exactly this idea is used in any text-
book on quantum mechanics. But it is desirable to
weaken this requirement, because it is addressed to a sin-
gle point and is so strong. One can require a finite differ-
ential probability in the spherical slice , or

(20)

If  at the origin, we must require
 and it follows that , or

(21)

Another generalization is to require a finite total
probability inside a sphere of small radius ,

(22)

In this case more singular behavior is permissible,
namely

(23)

where  is a small positive constant and  at
the end of the calculation. In this case
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The same constraint follows from  finite behav-
ior of the norm

(25)

The strongest is the Pauli argument [14], namely,
the time independence of the norm or conservation of
the number of particles. To explore it, we follow the pro-
cedure described in [12]: In quantum mechanics the
norm of the wave function is to be independent of time

(26)

By using the time dependent Schroedinger equa-
tion, we transform this equation to

(27)

Thus, the time independence of probability means
that the Hamiltonian must be a Hermitian operator.
By introducing the probability current density

(28)

it is easy to show that

(29)

The equation for conservation of probability takes
the form (after using the Gauss’ theorem)

(30)

where  is the normal component of the current rel-
ative to the surface.

If we assume that at the origin the Hamiltonian has
a singular point, Gauss’ theorem in the last equation is
not applicable. We must exclude this point from the
integration volume surrounded it by a small sphere of
radius . In this case, the surface integral is divided
into a surface at infinity that encloses the total volume,
and the surface of a sphere of radius :

(31)

where  is an element of solid angle. In the -
dimensions we should have . Because the
wave function must vanish at infinity, the second term
goes to zero. If we substitute
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and assume , where  is regular at , we
obtain

(33)

This equation is satisfied if . It fol-
lows that  does not diverge more rapidly than

, but now , which means that

(34)

Consequently, we see that different physically
acceptable arguments lead to diverse conclusions for
the wave function behavior at the origin. Namely, a
finite norm allows for a certain divergent behavior of

, but the time independence of the norm gives
vanishing behavior. We are inclined to think that this
last requirement is most fundamental because it is
related to hermiticity of the Hamiltonian and the van-
ishing of the reduced wave function is accepted as
valid. Moreover, it is in accord to the three dimen-
sional case. In this context, one can remember the
opinion of W. Pauli [14], that “An eigenfunction for
which , is not admissible, though for such

function  exists”.

4. SINGULAR POTENTIAL 
AND THE SELF-ADJOINT EXTENSION (SAE)

The behavior of reduced wave function, when 
turns to the origin of coordinates evidently depends on
potential  under consideration. The authors of
[1–6] believe that “the physical solutions require that

 when  and ”. But this opinion
may not be correct in general without considering sin-
gular properties of the outcome potential . It
must be clarified which physical solutions are meant
by authors.

From this point of view the following classification
is known for the Schroedinger equation [9] (It is natu-
ral, that this classification is the same in any dimen-
sions):

• (1) Regular potentials. They behave as
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For which solution of the equation
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Because L always is positive when D ≥ 4, the second
solution must be discarded, i.e., .

Therefore, all singularities may be contained into
.

• (2) Strong singular potentials, for which

(38)

For them, the “falling to the center” happens and
is not interesting for us now.

• (3) “Soft-singular” potentials, for which

(39)

Here the  sign corresponds to repulsion, while
the  sign—to attraction. For such potentials, the
wave function has the following behavior

(40)

where

(41)

In the region  the second solution (23)
also satisfies Dirichlet boundary condition and hence
it must be retained in general and therefore the self-
adjoint extension need to be performed [15]. As for the
region , only the first (standard or regular)
solution remains. Recalling the relation (9). One can
rewrite  as follows

(42)

or existence of the second (additional) solution can
take place when

(43)

i.e. with growth of dimension the restriction on 
increases. Therefore, the appearance of extra (so-
called, hydrino) states becomes more limited [15].

5. CONCLUSIONS
In this article, we consider the problem of bound-

ary condition of the radial wave function in an arbi-
trary dimensional quantum mechanics for generalized
central potentials. We have shown that in many
( )-dimensions there are no rigorous reasonings
to fix boundary condition at the origin of coordinates,
contrary to 3-dimensions. But from the time indepen-
dence of the norm (which means a conservation of
particle number in nonrelativistic quantum mechan-
ics, and at the same time, guarantee self-adjointness of
the Hamiltonian) the vanishing (i.e., Dirichlet)
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boundary condition is strongly motivated for both reg-
ular as well as singular potentials. For singular poten-
tials (not soft) there remain possibility employing
other conditions as well. In this respect, remarkably
enough, 3-dimensions stand out sharply against the
other dimensions in the sense that only in -
dimensions the reducing procedure automatically
gives the boundary condition,  and moreover,
corresponding Hamiltonian becomes a self-adjoint
operator (For details, see [15]).
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