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Abstract—The Gerstein–Greiner–Zeldovich effect—the spontaneous emission of vacuum positrons under
conditions of Coulomb supercriticality—has been studied in detail based on the first principles of quantum
electrodynamics within the framework of an essentially nonperturbative approach based on a special combi-
nation of analytical methods, computer algebra, and numerical calculations. Particular attention is paid to the
vacuum energy , considered a function of the parameters of the external Coulomb source: charge  and
radius . The specific contribution to  arising due to the direct Coulomb interaction of the vacuum
charge densities  has been studied in detail. It is shown that, with correct renormalization, this contri-
bution becomes negative after the first discrete levels descend into the lower continuum. Therefore, it is a
purely quantum effect, not observed in classical electrodynamics. The problem of lepton number conserva-
tion during spontaneous emission is also discussed.
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1. INTRODUCTION
Currently, the behavior of the electron–positron

vacuum in supercritical Coulomb fields is the subject
of active research [1–12]. The interest in the problem
is due to the fact that quantum electrodynamics
(QED) predicts a nonperturbative restructuring of the
vacuum state caused by diving of the discrete spectrum
levels into the lower continuum, which should be
accompanied by a number of nontrivial effects,
including the Gerstein–Greiner–Zeldovich effect—
the spontaneous emission of vacuum positrons and
the appearance of corresponding vacuum shells (see
[1, 13–16] and the literature cited there). In dimen-
sionality 3 + 1, similar effects should be observed in
Coulomb fields generated by localized extended
sources with a charge . Such sources
can be obtained as part of heavy ion collision experi-
ments at new accelerator complexes, such as FAIR
(Darmstadt), NICA (Dubna), and HIAF (Lanzhou)
[17–19].

The problem of spontaneous positrom emission in
supercritical Coulomb fields has a long history, start-
ing with the pioneering works of V. Greiner and Ya.
Zeldovich et al. in the early 1970s [20–25] (see also
[1, 13, 16, 26] and literature cited there). However, in
experiments carried out at the GSI heavy ion complex
(Darmstadt) and subsequently repeated at the
Argonne National Laboratory, no evidence of the cre-

ation of vacuum positrons was found [27]. The next
generation of heavy ion complexes should take these
studies to a new level [17–19], which makes it neces-
sary to deepen the theoretical understanding of the
spontaneous emission effect.

This paper examines the nonperturbative effects of
electron–positron vacuum polarization in the field of
a supercritical quasi-static Coulomb source with a
charge  and radius . Particular attention is
paid to the vacuum polarization energy . A key
role in the field of supercriticality is played by the vac-
uum energy , especially in the effect of creation of
vacuum positrons, since this process must occur solely
due to vacuum polarization, without any additional
energy transfer channels. In particular, it is the decrease
in vacuum energy  that should provide sponta-
neously produced positrons with additional repulsive
energy, necessary for their emission from the vicinity of
the source. Considered as a function of the source
charge Z , the vacuum energy  turns out to be a rap-
idly decreasing function with increasing , reaching
large negative values [28]. This decrease is accompanied
by negative jumps, the magnitude of which exactly
coincides with the rest mass of the electron, occurring
every time the next discrete level descends into the
lower continuum. If we consider the vacuum energy as
a function of the source radius R at a fixed Z, then its
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98 GRASHIN, SVESHNIKOV
behavior adequately describes all nonperturbative
effects of vacuum polarization that arise during low-
energy collisions of heavy ions. Due to the active inter-
est in the problem under consideration [1, 4, 7, 12, 17,
19], these issues require separate study.

Until now, most attention in this issue has been
paid to the polarization energy of the Dirac sea
[13‒15, 28]

(1)

where  is the Fermi level, which in prob-
lems with an external Coulomb source is chosen at the
threshold of the lower continuum, and  are the
eigenvalues of the corresponding spectral Dirac–
Coulomb (DC) problem. Essentially,  is the
Casimir energy of the electron–positron system in an
external Coulomb field [6, 14].

However, the total vacuum energy of the system is
not limited by this term. Namely, in the Coulomb
gauge, which is the most natural for such problems,
within the framework of QED, there appears an addi-
tional contribution to the total vacuum energy of the
system, corresponding to the direct Coulomb interac-
tion of vacuum charge densities 

(2)

This contribution is a direct consequence of the
corresponding operator expression that arises when
quantizing the electromagnetic field in the Coulomb
gauge (see, for example, [29], Chapter 15; an even
more detailed discussion of this issue is given in the
monograph [30]). Thus, the correct expression for the
total vacuum energy of the system in the problem
under consideration has the form

(3)
This work aims at studying the total vacuum

energy (3) of the system in the supercritical region for
, paying special attention to the contribution

of the Coulomb term . Interest in this term is due
to two factors. First, in the supercritical region

, the change in the vacuum charge density
 occurs mainly due to the formation of vacuum

shells, contributions from which change the total vac-
uum charge . Without taking into account these
contributions, weak effects of changes in the density of
states of the lower continuum and the evolution of dis-
crete levels remain, which cannot significantly change
the overall picture of the processes occurring. Second,
the behavior of the contribution from vacuum shells
differs significantly from what would be expected from
general concepts. The vacuum shell that appears after
the diving of the next discrete level into the lower con-
tinuum becomes negatively charged only after the
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decay of the resonance, accompanied by the positron
emission [13–15].1 Until this moment, the vacuum
shell remains vacant and does not contribute to .
After renormalization, the contribution to the total
vacuum energy due to the vacuum shells charged as a
result of the emission of positrons turns out to be neg-
ative, which is a purely quantum effect not observed in
classical electrodynamics. This result is similar to the
Juhling effect, in which the spatial distribution of
charge density in vacuum, induced by a point Cou-
lomb source, contradicts the classical picture [13–15].
Although this contribution turns out to be signifi-
cantly less than the main component of the vacuum
energy , the fact that the properly renormalized

term  is negative plays an important role in the
mechanism of spontaneous emission, especially for
values of the charge  slightly exceeding the first crit-
ical charge , since it is this negative contribution
that provides vacuum positrons with the additional
kinetic energy necessary for their emission with a non-
zero probability. It is to be noted that, although the
nonrenormalized contribution of  to the total
vacuum energy also contains negative jumps that arise
with each diving of a discrete level into the lower con-
tinuum, in general it turns out to be significantly pos-
itive and increases with increasing , which would
only further complicate the conditions of the energy
balance necessary for spontaneous emission.

To proceed further, without loss of generality, it is
sufficient to consider the DC problem in an external
spherically symmetric Coulomb field created by a uni-
formly charged sphere

(4)

or a ball

(5)

Hereinafter,
(6)

and the source radius  is restricted is limited below by
the value

(7)
approximately corresponding to the size of a super-
heavy nucleus with the charge ; from above, it is lim-

1 At this stage, the problem of lepton number conservation is
deliberately not discussed. It is assumed that, upon emission of a
positron, the corresponding positive lepton number must
remain in the system in the form of spatial density, localized in
vacuum shells. If this is not the case, then either the conserva-
tion law of the lepton number in such processes is violated or the
emission of positrons turns out to be strictly forbidden. How-
ever, there is currently no evidence that the lepton number can
exist as a spatial density.
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GERSTEIN–GREINER–ZELDOVICH EFFECT 99
ited by the value  on the order of the Compton
wavelength of the electron, since at such distances the
vacuum polarization effects become small corrections
of the order of .

It should be especially noted that, in the vacuum
polarization effects under consideration, the parame-
ter  plays the role of an effective coupling constant.
In addition, for the models of a uniformly charged
sphere and a ball (the latter is more suitable for the role
of a superheavy nucleus or a cluster consisting of heavy
ions), the difference in the considered effects of vac-
uum polarization turns out to be insignificant. It man-
ifests itself mainly in relation to vacuum energies

 for the same values of  and
, provided that the source radius  is sufficiently

close to the value  [28]. Moreover, the model
of a uniformly charged sphere makes it possible to
carry out most of the calculations in analytical form,
which is an obvious advantage. For the model of a uni-
formly charged ball, this is impossible, since in this
case there are no exact analytical solutions to the DC
problem, so it is necessary to use numerical methods
or special approximations [28].

As in other works on the topic under consideration
[1, 7, 10, 25, 27], the contribution of processes involv-
ing the exchange of virtual photons is omitted. Fur-
ther, everywhere, if specified separately, the relativistic
system of units  and the standard repre-
sentation of Dirac matrices are used. Specific calcula-
tions illustrating the general conclusions are carried
out for the value .

2. GENERAL PROBLEM STATEMENT
The most effective nonperturbative approach in

calculating the vacuum charge density  is based
on the Wichmann–Kroll (WK) method [31, 32, 36].
The starting point is the expression for the vacuum
charge density

(8)

with  being the Fermi level, which in such
problems with an external Coulomb source is chosen
at the threshold of the lower continuum, and  and

 are the eigen values and eigen funtions of the
corresponding spectral DC problem. Expression (8)
for the vacuum charge density is a direct consequence
of the Schwinger prescription for the fermionic opera-
tor of current

(9)
In the case under consideration, a very important

fact is that  turns out to be not the average, but
the eigenvalue of the fermionic charge density opera-
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tor  acting on the vacuum state. To do this, it is
sufficient to use Farry’s picture, i.e., expand fermion
fields in a single-particle basis,

(10)

with

(11)

All other commutators disappear, and the com-
plete set  is chosen according to the above defi-
nitions. Writing the charge density operator as the sum
of its normally ordered form and the vacuum charge
density determined by expression (8), we obtain

(12)

Since the following relations are satisfied in Farry’s
picture for the vacuum state ,

(13)
the action of operator (12) on it leads to

(14)

Thus,  is indeed an eigenvalue of the charge
density operator on the vacuum state. It is appropriate
to compare this result with the properties of a classical
wave packet, which is the average of the electromag-
netic field operator over a coherent state with an indef-
inite number of photons generated by a classical exter-
nal source. In this case, both the electric and magnetic
components of the wave packet have nonzero disper-
sion created by f luctuations in the number of photons
in each mode.

For models quadratic in fermion fields, such as
QED, QCD, and other gauge theories, a similar state-
ment is true for vacuum energy. In QED, this is a con-
sequence of the fact that the current structure (9)
requires the following form of the Dirac Hamiltonian
in an external electromagnetic field [6, 14]

(15)

Carrying out calculations completely analogous to
those given above for the current, it is not difficult to
arrive at the relation
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Fig. 1. Special contours on the first sheet of the Riemann
energy surface, used to represent vacuum charge density
(8) as contour integrals. The direction of bypassing of con-
tours in accordance with (25).
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However, within the framework of the approach we
use, the density  does not allow us to directly
apply the WK method, because working with the den-
sity requires significantly more advanced calculation
techniques.

Integrating relation (17) over the entire space leads
to an expression for the main component of vacuum
energy

(18)

which is the eigen value of the Dirac Hamiltonian,
acting on the vacuum state.

The second component of vacuum energy—the
Coulomb term (2)—arises due to the structure of the
electromagnetic field Hamiltonian

(19)

where

(20)

Writing the electric field as a sum of the longitudi-
nal and transverse components

(21)

where  and  
and integrating by parts with allowance for the gauge
condition , one obtains the expression
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the first term of which is simply transformed into
operator expression

(23)

Combining it with (14), we arrive at the final
expression for the second component of the total vac-
uum energy (3)—Coulomb term (2).

The purpose of this work is to study the behavior of
the total vacuum energy (3) of the system in the super-
critical region for , paying special attention to
the contribution of the Coulomb term . To do
this, first and foremost, we should consider in detail
vacuum charge density (8) and the contribution to it
from vacuum shells.

3. VACUUM CHARGE DENSITY 
IN LHC FORMALISM

The essence of the WK method is to use the vac-
uum density representation in the form of contour
integrals in the complex plane over the energy variable
from the trace of Green’s function of the correspond-
ing spectral problem of the WK. In the problem under
consideration, Green’s function satisfies the equation

(24)

The formal solution of Eq. (24) is written in
the form

(25)

Following [31], the vacuum charge density can be
expressed through integrals along the contours 
and  on the first sheet of the Riemann energy
surface (Fig. 1)

(26)

Note that the Green’s function included in this
expression must be properly regularized in order for
the limit  to exist and the integrals by  to con-
verge. This procedure is discussed in detail below. At
this stage, we will assume that all expressions contain
only regularized Green’s functions. The main conse-
quence of this assumption is the uniform asymptotic
behavior of integrands in (26) on arcs of a great circle
for . This allows one to deform the contours
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the imaginary axis. After this we can pass to the limit
 and obtain the expression

(27)

where  are the normalized eigen functions of
discrete levels , for which hereinafter the
following notation is adopted:

(28)

Representing Green’s function (25) as a partial
expansion in  [31], [32],

(29)

where the radial Green function  is defined as

(30)

and the radial Hamiltonian of DC problem has
the form

(31)

we obtain the following expressions for the partial
expansion terms :

(32)

where  are the normalized radial wavefunctions
with eigen values  and  of the corresponding radial
DC problem. Using the symmetry properties of

, reported in [32] and expression (32), we
obtain the sum  of two partial vacuum charge
densities with opposite signs of :

(33)

which, by construction, is a known real quantity and
odd in  (in full accordance with Farry’s theorem).
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4. VACUUM DENSITY RENORMALIZATION: 
MOTIVATION AND MAIN CONSEQUENCES

The general result found in [32] through the expan-
sion of  in powers of the parameter  (but
for a fixed value of the source radius !)

(34)

is that all divergences of  are contained only in
the fermionic loop with two outer ends, and all subse-
quent orders of expansion in  are already free from
divergences (see also [36] and the cited literature).
This statement is always true in dimensions 1 + 1 and
2 + 1 and, in the three-dimensional case, for a spher-
ically symmetric external potential. It was verified by
direct calculations within the framework of the non-
perturbative approach for 1 + 1 in [5, 6] and for 1 + 2
in [37–40]. This approach can be transferred with
minimal changes to the 3 + 1 dimension, since the
structure of the partial Green’s functions in 2D and
3D cases is the same, with the exception of the addi-
tional factor , and the replacement . In this
case, the spherical symmetry of the Coulomb poten-
tial plays a key role, since the above statement can be
proven using a partial expansion  for each term

, but not immediately for the entire series as a
whole.

This circumstance was already discussed earlier in
[32], where it was shown that the main reason for this
difference is the difference in the properties of individ-
ual partial radial Green’s functions  and the entire
series as a whole. First, there is a limit of for

. At the same time, the complete Green’s func-
tion  diverges for . In this case, for the

vacuum charge density , corresponding to the
first order of perturbation theory, or linear in , the
permutation of operation of taking the limit

and contour integration in (33) leads to differ-
ent final results.

On the other hand, attempts to directly calculate
the vacuum density by means (27) lead to uncer-
tainty arising when permutating the operation of tak-
ing the limit  and integrating along the imagi-
nary axis. At the same time, when calculating the par-
tial terms , no such problem occurs. Thus, for
regular spherically symmetric external potentials, the
renormalization of  is carried out by calculating
it in the form of a sum of partial contributions of

 without any additional manipulations.
As a result, the procedure for renormalizing vac-

uum density (8) is actually the same for all three spatial
dimensions and is carried out as follows. First, it is nec-
essary to separate in expression (27) the terms linear in
the external field and replace them with the renormalized
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102 GRASHIN, SVESHNIKOV
perturbative density  (corresponding to the first
order of diagrammatic perturbation theory (PT)), calcu-
lated for the same value of the source radius . For this
purpose, a partial component  of vacuum density
is introduced, defined as follows

(35)

where  is the linear in  component of the
partial Green’s function , coinciding with
the first term of the Born series

(36)

where  is the free Green’s function of the radial
Dirac equation with the same  and . Components

 by construction contain only odd powers of
, starting from , and therefore are free from

divergences. At the same time, just they are responsi-
ble for all the nonlinear effects that arise when the dis-
crete levels descend into the lower continuum.

The Born term (36), being necessary to separate
the nonlinear component from the total vacuum den-
sity, for the external potential  of the Coulomb
type, has the form

(37)

where  and  are the Infeld’s and MacDonald’s functions, respectively, and

(38)

For both external potentials (4), (5) under consideration , all integrals included in expression (37) are calcu-
lated in analytical form, but the corresponding expressions for the Born term turn out to be quite cumbersome.
An explicit expression in the case of potential (4) for s-channel, which will be needed later, has the form given
below. First, we introduce a number of auxiliary functions defined by the relations

(39)
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Fig. 2. Function  for (a)  and ; (b)  and .
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As a result,

(40)

In a completely similar way, one can perform inte-
gration over  in the Born term (37) for any value

 and obtain the corresponding explicit expres-
sion; however, as  increases, these calculations
become increasingly cumbersome. In this work, the
analysis is limited to the s-channel, which makes a deci-
sive contribution for the considered range of source
parameters. Although explicit expressions (39)–(40)
include the integral exponential and hyperbolic
cosine, taking into account the currently available
computational capabilities, their numerical integration
over the variable , required to allocate the nonlinear
component  from the total partial vacuum den-
sity, does not meet with particular difficulties.

The behavior of  for various asymptotic
regimes for both its arguments is discussed in detail in
[41]. From these results, the component  of
vacuum density linear in  is given by

(41)

and

(42)

(43)

where  are certain positive functions of the quan-
tum number of angular momentum. It is to be noted
that  does not contain the contribution of dis-
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crete levels, since the latter is essentially nonlinear and
manifests itself only in components . A direct
consequence of asymptotics (43), in particular, is the
fact that linear in  component of the nonrenormal-
ized integral vacuum charge

(44)

diverges.
The next fact that should be noted is the significant

differences in behavior of the component of 

and the renormalized perturbative density  as
functions of . In particular, the calculation of 
using formulas (39), (40) shows that this function is
positive for all , while the perturbative density has a
positive peak in the vicinity of the Coulomb source
and is negative outside it (see, for example, [15]). The
behavior of  in the s-channel is shown in Fig. 2
for two values of source charge . The cor-
responding radii of the Coulomb source are chosen
large enough so that the details of the nonlinear
behavior of the charge density in the intermediate
range (in which the transition occurs from asymptotics
of the form  at  to asymptotics  at

 ) are clearly distinguishable.
As a result, the correctly renormalized vacuum

charge density  has the form2

(45)

2 For a point source, the convergence of the partial expansion in
(45) was proven in the original work by Wichmann and Kroll
[31]. The effect of finite source size on this convergence is dis-
cussed in detail in [32]. For the problem under consideration, it
is a consequence of the convergence of the partial expansion for

, which was shown in [28].
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Perturbative vacuum density  is obtained
from the first order perturbation theory according to
the commonly accepted scheme [15, 42, 44]

(46)

where

(47)

Polarization function  in (47) is defined by
the relation , being
dimensionless. In the considered case, , and
and the explicit expression for  takes the form

(48)

where

(49)

with the following IR asymptotics

(50)
A direct consequence of renormalization proce-

dure (45) is that it guarantees zeroing the total vacuum
charge

(51)

in the subcritical range . In fact, this con-
firms the assumption that, with an external field uni-
formly decreasing at spatial infinity, without special
boundary conditions or nontrivial topology of the
field manifold in the subcritical range , the
correctly renormalized integral vacuum charge must
be zero, and vacuum polarization effects can only dis-
tort its spatial distribution. It should be noted, how-
ever, that this is not a theorem, but only a plausible
statement, which in each specific case must be dou-
ble-checked by direct calculation.

For the problem under consideration, the validity
of this statement can be shown as follows. First and
foremost, it should be noted that

(52)
This relation is a direct consequence of the general

QED renormalization condition for the polarization
function  for  (in the case under con-
sideration, this directly follows from asymptotics (50)).
To prove (52), consider the static equation for the
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potential  created by the external charge density
 in momentum space (up to factors of type 

and common sign)

(53)

where  is the polarizatuion operator in the nor-
mal form with dimensionality , introduced by the
relation . Within the
framework of perturbation theory, we should assume
that ; then potential  can be written in
the form of the expansion

(54)

The classical part of potential  satisfies the
equation

(55)

and defines the external potential , while the
first quantum correction, correspondingly, satisfies
the equation

(56)

The right-hand side of (56), up to a factor ,

represents the perturbative vacuum density .
Passing to the coordinate representation, we obtain
(up to factors of type )

(57)

Integrating (57) over the entire space leads to the
following expression for the integral perturbative vac-
uum charge 

(58)

Taking into account the renormalization condition
for , from (58) it follows that  in those
cases when the external potential  in momen-
tum space for  has a singularity no stronger
than  (in the 3D case) or  (in the 2 + 1
case). For the considered Coulomb-type potentials in
dimensions 2 + 1 and 3 + 1, the  behaves as

 and , respectively. In dimension 1 + 1

for potentials similar to (4),  has only a logarith-
mic singularity. Thus, for potentials of the form (4),
(5), the identity  holds in all the cases.

However, beyond the framework of the first order
perturbation theory and for the entire subcritical
region, when, due to the presence of negative discrete
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Fig. 3. Demonstration of the behavior of integral (59)
taken along the imaginary axis when the pole of the
Green’s function lying on the real axis passes through the
origin.

– + =
0 0

iy iy iy
(a) (b) (c) (d)
levels, the dependence  on the external field can

no longer be described by a perturbative expansion
series similar to (54), the question of whether  dis-
appears requires significantly more detailed analysis.

Direct verification shows that the contribution
from  to  for  is also zero. In dimen-
sion 1+1, this statement can be proven analytically,
but in dimension 2 + 1, due to the complexity of the
expressions included in , it is no longer possi-
ble to carry out such a check in a purely analytical
form. However, it can be performed quite reliably
using a combination of analytical and numerical
methods (see [37], Appendix B). This approach can be
transferred to dimension 3 + 1 with minimal changes,
since the structure of the partial Green’s functions in
two- and three-dimensional cases is the same, with
the exception of the additional factor  and the
replacement . Moreover, it is sufficient to ver-

ify the disappearance of the total vacuum charge 
not in the entire subcritical region, but only in the
absence of negative discrete levels. If they are present,
the disappearance of the total vacuum charge at

 follows from arguments independent of the
model, which are based on the original expression for
vacuum density (8). From (8) it follows that a change
in the integral charge  is possible only at ,
when discrete levels reach the lower continuum. One
of the possible ways to prove this statement is based
on a detailed analysis of the behavior of the integral
along the imaginary axis included in the original
expression (32) for , namely,

(59)

with such an infinitesimal variation of the parameters
of the external source, when the initially positive dis-
crete level , being located infinitely close to the ori-
gin of coordinates, becomes negative. Then the corre-
sponding pole of the Green’s function undergoes an
infinitesimal displacement along the real axis and also
intersects the ordinate axis, which corresponds to a
change in  equal to the residue value at the point

(60)

For details of the calculation, see Fig. 3, taking into
account definition (25) of the Green’s function.

Thus, taking into account the multiplicity of
degeneracy of discrete levels in the spherically sym-
metric case, the contribution  to the total vacuum
charge decreases by  with each appearance of a
negative discrete level . While this negative level
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exists, the vacuum charge jump is compensated by the
corresponding term included in the sum over all nega-
tive discrete levels in expression (32). The latter, in
addition, ensures the continuity of the vacuum charge
density when level  crosses the zero point .
However, once this level reaches the lower continuum,
the total vacuum charge will change by exactly the
amount .

It should be specifically noted that this effect is
essentially nonperturbative and is entirely contained in

, while  does not participate in any way and still
makes a purely zero contribution to the total charge.
Thus, in the problem under consideration, the
induced vacuum charge after renormalization turns
out to be nonzero only at , due to nonpertur-
bative effects of vacuum polarization caused by the
diving of discrete levels into the lower continuum. This
is in full agreement with [1, 13–15, 36].

As a result, the behavior of the vacuum density
renormalized using expression (45) in the nonpertur-
bative region turns out to be exactly what should be
expected from general ideas about the structure of the
electron–positron vacuum at . Moreover, it
becomes the reference point for the entire renormal-
ization procedure, and, along with the principle of
minimal subtraction, allows one to eliminate the inev-
itable ambiguity in identifying the divergent part of the
original expression for . This fact will be used
later in the renormalization of vacuum energy.

A more detailed picture of changes in the value of
 in the supercritical region is quite sim-

ilar to the picture considered in [1, 13–15] based on
the Fano formalism for autoionization processes in
atomic physics [15], [45]. The main result is that, when
the level  crosses the boundary of the lower con-
tinuum, the change in vacuum density has the form

(61)
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It should be noted here that the original approach
[45] directly considers the change in the density of
states . Due to this, the change in the induced
charge density (61) is simply a consequence of the
relation . Such a jump in the vacuum
charge density occurs for each discrete level that
descends into the lower continuum, having a unique
set of quantum numbers . In particular, in the prob-
lem under consideration, each -fold degenerate
discrete level, when diving into the lower continuum,
causes a jump in the total vacuum charge by amount

. Other quantities, including the lepton num-
ber, should behave similarly. However, it should be
taken into account that the Fano formalism uses a
number of approximations. In reality, formula (61) is
accurate only in the immediate vicinity of the corre-
sponding . This is clearly demonstrated by specific
examples for 1 + 1 and 2 + 1 systems in [5, 37, 39, 46]
and below for the 3 + 1 case.

As in [28], we present the results for  in the
model of a charged sphere (4) in the range

. Moreover, the numerical value of the
coefficient in relation (7) is chosen to be 3

(62)

For potential (4), the corresponding partial
Green’s functions can be written explicitly in terms of
Bessel functions and degenerate hypergeometric func-
tions, which significantly simplifies the calculation of
integrals along the imaginary axis in expression (33).
The corresponding explicit analytical formulas for

 are given in [32].
In the range , four discrete levels

from the -channel descend into the lower contin-
uum:  for ,  for , 
for , and  for . The cor-
responding values of the critical charges for both pari-
ties  are found from the equation

(63)

in which  is the McDonald function and

(64)

Figures 4 and 5 demonstrate the behavior of the
nonperturbative component of the vacuum charge
density , in particular, the jumps in the vacuum

3 At such a choice, the lower level  for the model of a charged
ball at Z = 170 has the energy . In addition, the
chosen value of the coefficient is quite close to the value 1.23,
which is usually used in models of heavy nuclei.
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density that occur with each discrete level diving into
the lower continuum. Direct calculations confirm that
the corresponding jumps in the total vacuum charge
are exactly equal to . Moreover, the spatial
distribution of vacuum density jumps exactly coin-
cides with the profile  of discrete levels at the
boundary of the lower continuum, multiplied by the
factor . Figure 6 shows the plots of radial
functions normalized to unity for one of two
possible spin projections.

Thus, the most correct way to calculate  for
all domains of  is to use the original renormalized
expression (45) with subsequent verification of the
expected integer value of the induced charge 
through the direct integration of .

5. VACUUM ENERGY RENORMALIZATION
Calculation of the renormalized polarization

energy of the Dirac sea for such problems with an
external spherically symmetric Coulomb potential is
considered in detail in [6, 28, 47, 48]. The original
expression for , in accordance with density

, which disappears in the absence of external
fields, has the form

(65)

where the lower index  denotes a nonzero external
field  and index  corresponds to the free case

.
Next, in (65), one should separate out the individual

contributions from the discrete and continuous spectra,
and then, for the difference of integrals over the continu-

ous spectrum, , use the
well-known technique that represents this difference
in the form of an integral of the elastic scattering phase

 (see [6, 28, 49–51] and references therein). The
final result for  in the form of a partial
expansion by angular number has the form [28]
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Fig. 4. Dominating behavior of the function  in the -channel at given , yielding a contribution of more than 
into all vacuum polarization effects: (a) in the domain , where it changes most rapidly; (b) in the domain ,
where its behavior nearly coincides with the asymtotics.
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The quantity  in expression (67) is the total
phase shift at a given value of the wave number  and
angular number , including contributions from
scattering states from the upper and lower continua of

δtot( , )k q
q

±k
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both parities for  radial DK problem with Hamilto-

nian (31). The additional sum  in the term corre-

sponding to the contribution of the discrete spectrum

the

±
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Fig. 5. Same as in Fig. 4 for (a) the domain , where  changes most rapidly; (b) the domain ,
where it nearly coincides with the asymptotics.
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to  takes into account the contribution of
levels with different parities.

This approach to calculating  turns out
to be very effective, since for external potentials of the
form (4), (5) each partial term in the expression for

 immediately becomes finite. This is due

%D,VP, ( , )k Z R

%D,VP( , )Z R

%D,VP( , )Z R
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to the fact that  behaves both in the IR and UV
ranges with respect to the variable  much better than
each of the elastic phases separately. Namely, 

has a finite limit for  and varies as  for

 . As a result, the phase integral in (67)

δtot( , )k q
q

δtot( , )k q

→ 0q 3(1 )O q

→ ∞q 3(1 )O q
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Fig. 6. Normalized functions  of discrete levels (for one spin projection) on the boundary of the lower continuum for

(a) ; (b) . The colors of  and  are chosen so that they coincide with the colors of the plots
of the corresponding vacuum densities for  (blue) and  (black).
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always converges. In addition, , by construc-
tion, will automatically be an even function of the
external field. In its turn, in the contribution of bound
states to , the focal point  is always

regular, since  at . This cir-
cumstance makes it possible to proceed without the
intermediate regularization of the Coulomb asymptot-
ics of the external potential at , which signifi-
cantly simplifies all further calculations.

δtot( , )k q

%D,VP,k ± →e , 1n k

±− ∼e
2

,1 (1 )n k O n → ∞n

→ ∞r
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In the case of , the divergence of the
theory manifests itself in the divergence of partial
series (66) [28]. This implies the need for its regular-
ization and subsequent renormalization, although
each individual partial term  itself is
immediately finite without any additional manipula-
tions. The need for renormalization through the fer-
mion loop also follows from the analysis of the prop-
erties of  carried out in Section 4, which shows that,
without such renormalization, the integral vacuum

%D,VP( , )Z R

%D,VP, ( , )k Z R

VP�
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charge will not have the expected integer value in units
. In essence, the properties of  here play a

role of the inspector, ensuring the fulfillment of the
necessary physical conditions for the correct descrip-
tion of the effects of vacuum polarization beyond the
framework of perturbation theory, which are not
traced when calculating  using initial expres-
sions (1), (65).

Thus, in complete analogy with the renormalization
of vacuum charge density (45), it is necessary to pass to
the renormalized  using the relation

(68)

where

(69)

and the renormalization coefficients  are
defined as follows:

(70)

The main essence of procedure (68)–(70) is to
allocate (at fixed !) divergent components quadratic
in  from the nonrenormalized partial terms

 of expansion (66), replacing them with

renormalized , found within the framework
of perturbatation theory. In this case, both the conver-
gence of entire partial series (68) and the correct value
of the limit  for  at fixed  are auto-
matically ensured.

The expression for the perturbative term 
follows from the general relation for the first-order
perturbation theory [42, 44]

(71)

where  is the perturbativive vacuum density
defined by expressions (46)–(49). Substituting (46),
(47) into (71) yields

(72)

It should be noted that, since the function ,
determined by relations (48), (49), is strictly positive,
the perturbative vacuum energy is also a strictly posi-
tive quantity.

For the case of a spherically symmetric potential
, the perturbative vacuum energy

−( 2 )e VP�

%D,VP

%
ren
D,VP( , )Z R

=
= % %

ren ren
D,VP D,VP,

1
( , ) ( , ),k

k

Z R Z R

= + ζ% %
ren 2
D,V , D,VP, ,( , ) ( , ) ( ) ,P k k D kZ R Z R R Z

ζ , ( )D k R

→

 δ −
ζ =  

 

% %

0

PT
D,VP 0 ,1 D,VP, 0

D, 20 0

( ) ( )
( ) .lim

k k
k

Z
R

Z Z
R

Z

R
Q

%D,VP, ( , )k Z R

δ%
PT
D,VP ,1k

%
ren
D,VP( , )Z R → 0Z R

δ%
PT
D,VP ,1k

= 
� � �

%
PT PT ext
D,VP VP 0

1 ( ) ( ),
2

dr r A r�

�PT
VP( )r�

= Π −
π  

��

�� � � �

%
2PT 2 2 ext

D,VP 04
1 ( ) ( ) .

64
iqr

Rdqq q dre A r

( )S x

=�ext
0 0( ) ( )A r A r
PHYSICS OF PARTIC
belongs to the s-channel, which corresponds to the
multiplier  in (70), and has the form

(73)

From (73), the perturbative vacuum energy in the
charged sphere model is given by

(74)

and, in the ball model, respectively,

(75)

For the source radii  sufficiently close to 
and satisfying the condition

(76)

the integrals in (74), (75) are calculated analytically [14]:

(77)

for the sphere model and

(78)

for the ball model. In this case, the fraction

(79)

exactly reproduces the ratio between the classical elec-
trostatic energies of a uniformly charged ball ( )

and a sphere ( ). In the case under consider-

ation, however, condition (76) is too severe, so 
is found by numerical methods directly from the orig-
inal integral representations. Figure 7 shows the
dependence of  as a function of  at

 for the sphere model.
The renormalization of the Coulomb term is com-

pletely similar to those for the vacuum charge density
and . It is important to note that it in no

way implies a direct substitution of 
into expression (2). Instead, it is necessary to follow
the general scheme of subtracting (for a fixed R!) the
component quadratic in parameter Q from original
expression (2) and then replacing it with the corre-
sponding perturbative contribution. This means that
the renormalized Coulomb term must be defined as
follows

(80)
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Fig. 7. Dependence  for potential (4) at
 in the range .
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The renormalization coefficient  is found
using the relation

(81)

where

(82)

and  is defined by expressions (46) and (49).
This approach provides a renormalization of the

Coulomb term that is fully consistent with renormal-
izations of  and  due to the use of the same
subtraction procedure, as well as the correct value of
the limit  at  and fixed . Expres-
sion (80) can be rewritten as follows:

(83)

Of most interest is the fact that, in the supercritical
region, the Born component  turns out to be much
larger than the perturbative term , as a result of
which a very specific effect arises—vacuum shells, the
charges of which have the same sign (negative), which
are effectively attracted.

In the case under consideration, the contribution
from the Coulomb term  is calculated as
follows. For the s-channel, general expression (83) has
the form

(84)

where  are the perturbative Born’s
(defined by expression (41)) and total vacuum charge
densities calculated for the s-channel, respectively.
Figures 8a–8c show the plots of the renormalized
Coulomb term  and its components—pertur-

bative  and Born’s —as functions of
the charge  of the source at . From
Fig. 8a it is clearly seen how the renormalized Cou-
lomb term  behaves. Until the first discrete
level dives into the lower continuum, the Coulomb
interaction between the vacuum charge densities cor-
responds to their effective repulsion. When each dis-
crete level reaches the lower continuum with the for-
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mation of a charged vacuum shell, a negative jump
occurs in . As a result, after the first discrete
level dives, the Coulomb interaction between the vac-
uum charge densities will correspond to the effective
attraction. This nontrivial effect is a direct conse-
quence of renormalization procedure (80)–(82).
Moreover, the general shape of the plots  and

 vs.  is the same: there are negative jumps
on the plots at each . The main difference is that

 is much larger in magnitude than the Cou-
lomb term and decreases faster and faster with increas-
ing Z compared to , which behaves much
more smoothly. In addition, negative jumps
in  are always equal to , while, for

, the magnitude of the jumps is not a strictly
fixed value, but depends on the structure of the wave
functions  of discrete levels at the boundary of
the lower continuum. The main property of jumps
in  is the decrease with increasing  due to an
increase in the number of nodes of the wave functions

 at the boundary of the lower continuum.

We should also dwell on the calculation of the per-
turbative term  for the sphere model. In
this case, the corresponding perturbative charge den-
sity  has a -like singularity for . Because
of this, it is difficult to directly calculate the contribu-
tion from the corresponding term into integral (84).
This problem can be circumvented by considering the
expression for the Coulomb term written in terms of
the longitudinal component of the electric field,

. This is due to the fact that, for external poten-

tial (4), the Juhling potential  is a continuous
function, and its first derivative (and, accordingly,
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Fig. 8. Different components of the renormalized Coulomb term as a function of  at  in the range :

(a) , (b) , and (c) .
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) is continuous everywhere except for the
finite jump at . At the same time, for both 
and , the radial component of the electric field

 is well defined. Therefore, for the sphere

model, the perturbative contribution  in
the Coulomb term is found by the relation

(85)

Unlike the perturbative contribution ,
which is a monotonously increasing function, the
Born term  defined by the charge density
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 behaves in a more nontrivial way. First, accord-
ing to (42), (43), the asymptotics  are such that
the corresponding integral defining the Born term in
expression (84) converges, so that the renormalization
of the Coulomb interaction is reduced to the subtrac-
tion of a finite quantity. However, the need for such a
subtraction is justified, since it is part of the general
renormalization scheme. Second,  is signifi-
cantly larger than other components of the Coulomb
energy. Therefore,  becomes negative in the
supercritical region . The most nontrivial

property of  is the noticeable response to crit-
ical charges. It does not appear as brightly as in the

(1)
VP( )r�
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Fig. 9. Non-renormalized Coulomb term  as a function of  for  in the range .
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renormalized Coulomb term , but it is
expressed quite explicitly. The reason for this is that,
unlike , which is the result of a purely perturba-
tive calculation,  is part of the total vacuum den-
sity and, therefore, albeit partially, reflects the infor-
mation about the diving of levels into the lower contin-
uum contained in the total vacuum density .

As an additional illustration of the general structure
of the Coulomb term in vacuum energy, Fig. 9 shows a
plot of the nonrenormalized Coulomb term

, which is also a finite quantity. It
has negative jumps at every , but is strictly positive.
Thus, without renormalization replacing 

by , the main effect of the Coulomb term
would be an additional repulsion of the vacuum charge
densities, which would lead to additional problems for
spontaneous emission. On the other hand,

 acts in the right direction, but its contri-
bution is not enough to drastically improve the overall
picture.

6. CONCLUSIONS
Thus, the additional contribution from the cor-

rectly renormalized Coulomb term  to the
total vacuum energy turns out to be negative and can
play a positive role in the energy balance of sponta-
neous emission in the range , which is
currently a reference point for theoretical and experi-
mental research on this topic within the framework of
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heavy ion collisions [7, 11, 17–19].  should also be
noted that, if a level that descends into the lower con-
tinuum manifests itself as an unfilled vacancy, then the
only result will be a change in the density of states 
in accordance with the general approach [15, 45]. As a
result, the resulting vacuum shell remains uncharged,
and thus no negative jump in  occurs. As a

consequence, the main component in , in

this case, will be the perturbative term ,
which is stricly positive and negligibly small compared
to . Dependence  vs. 
for  is shown in Fig. 8b. It decays as 
with increasing  at fixed . Thus, the total vacuum
energy  in this case, up to a small positive
correction that disappears at large , coincides with its
main component . For this reason, in

Eq. (24), the additional term  to the
external potential , due to the induced scalar com-
ponent , which arises in the Coulomb gauge
from the Poisson equation  [29], also
turns out to be negligible and can be omitted without
any loss of generality.

In addition, during the spontaneous emission of
vacuum positrons, the latter carry away a lepton num-
ber equal to their amount with a minus sign. Then the
corresponding positive lepton number must remain in
the form of spatial density, concentrated in vacuum
shells. Otherwise, in such processes either the conser-
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vation law of the lepton number must be violated, or
spontaneous emission itself becomes impossible.
Therefore, any reliable experimental result on the
problem of spontaneous emission is important for
understanding the nature of the lepton number, since
at present there is no evidence for the presence of any
internal lepton structure. See [47] for a more detailed
discussion of this issue.
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