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Abstract—We discuss the mathematical formalism of 10 dimensional Exceptional Drinfel’d Algebra, provide
a brief explanation of developments in dualities in string theory and present our results in classification of
4 dimensional Exceptional Drinfel’d Algebras, which are the underlying Algebraic structures for the
U-dualities.
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INTRODUCTION
String theory is a background dependent theory. It

possesses a rich framework of dualities with which
solutions on different backgrounds can be related to
each other. T-duality relates the theories with big com-
pactification radius, to the small ones— . Ini-
tially, T-duality was developed for spaces which had
Abelian isometries [1]. In [2, 3], the abelian procedure
was generalised to non-Abelian isometries. A similar
duality exhibited by superstrings is the S-duality where

—strong-weak coupling duality. At last, M-the-

ory provides a framework to relate all known flavors of
superstrings (and their low-energy limits—SUGRAs)
via U-dualities which is a broader class of duality and
includes within itself T and S-dualities.

Our discussion is a generalisation of the procedure
of [4] to find dual backgrounds prescribing to the
U-duality transform [5, 6]. It is well known in string
theory that after compactification of strings to reduce
theory to a lower dimensional space, the U-dualities
exhibit themselves as symmetries of the  groups
called “the Exceptional groups”.

For compactification on a 4-torus, the U-duality
group  is— . So our task in this paper is to
start with a 4-dimensional Lie algebra and expand it
based on rules provided in [7] to generate the corre-
sponding 10-dimensional Exceptional Drinfel’d Alge-
bra (EDA) which possesses  symmetry in a
manifest way by construction. More precisely, by find-
ing these algebras, we wish to check in future work, the
existence of SL(5) dualities between different EDAs

which would mean the presence of U-duality between
these backgrounds. This allows us to define a theory
(the Exceptional Field theory) that contains the sym-
metries of compactified M-theory in manifest way
(i.e. without compactification to a lower dimension).
In the next section, we will present a brief review of the
mathematical construction of these rules to define an
EDA for the SL(5) theory. We will then present our
results on the expansion of 4-dimensional Lie algebras
to 10d EDAs describing the symmetries of M-theory
(in our case, of its lower dimensional limit—
1d SUGRA) in a manifest way.

We present our results based on algebras consider-
ing only those 4-dimensional Lie algebras which do
not contain a U(1) cycle in them—they are not
decomposible as a product of a 3-dimensional and a
1-dimensional (abelian) Lie algebra. This is because
we are only interested in U-dualities between
11-dimensional supergravities (and not the Type IIB
theory) [8].

EXCEPTIONAL 
DRINFEL’D ALGEBRA: SL(5)

This section is based on [7]. We will be focusing on
the 10d case where generators of the exceptional Drin-
feld algebra  are collected into the 10-dimensional
representation of the SL(5) group , where

. Multiplication table is then given by
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Table 1. Classification of 4-dimensional indecomposable real Lie algebras  with   [10]4,ng = 1, ,10n
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The structures constants  are defined by the
following relations

(2)

(3)

where  is antisymmetric and S is a symmetric tensor,
while . For the algebra to be an EDA, com-
ponents of the constants , , and  under
decomposition  must be defined as

(4)

The constants  have the same structure as the
embedding tensor of [9], and in this language the
above construction implies that only the geometric
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f lux (anholonomy coefficients) and -flux are turned
on. The former is given by the structure constants 
of the geometric subalgebra  and the latter is given by

. The algebra is Leibniz with the fundamental
identity given by the quadratic relations analogous to
those of 7d maximal gauged SUGRA [9]:

(5)

In terms of structure constants  and dual con-
stants , the conditions become

(6)

RESULTS AND DISCUSSION
Here we present all the 4 dimensional Lie algebras

of interest. We have listed all those algebras which do
not contain a U(1) cycle.

Using the above table, and the mathematical for-
malism presented in the last passage, we derive all
10-dimensional EDA.
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Table 2. All possible structure constant of 10d EDAs for each  with  and . The constants  are
the same as in the previous table
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CONCLUSIONS
Our current work is focused on finding U-dualities

between 11d SUGRAs by checking the existence of an
 transformation between the above derived

classes of EDA. If such a transformation exists
=4 (5)E SL
PHYSICS OF PARTIC
between a pair of EDAs, the corresponding algebras
will become equivalent upto an  transform relat-
ing them. This would hence confirm whether or not
U-dualities exists between 11d SUGRAs in the frame-
work of Exceptional Field theory.
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