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Abstract—The main steps of the process of obtaining the result [1] in terms of elliptic polylogarithms for a
two-loop sunrise integral with two different internal masses with pseudothreshold kinematics for all orders of
the dimensional regulator are shown.
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INTRODUCTION

Feynman integrals allow a Laurent expansion with
respect to a dimensional regulator, and the coeffi-
cients of this expansion can often be explicitly com-
puted in terms of well-known special functions such as
multiple polylogarithms (MPL) and multiple elliptic
polylogarithms (eMPL) (see the recent paper [2] and
references and discussions therein). In practice, it is
often possible to truncate the Laurent series, since
only a few orders of expansion are required to calculate
physically significant quantities. Nevertheless, it is
interesting to investigate the analytical structure of
these coefficients at higher orders, or, more generally,
at all orders of the dimensional regulator.

This article shows the main stages of the consider-
ation [1] of a two-loop sunrise integral topology with
two different internal masses, denoted  and , and
pseudo-threshold kinematics  [3] (see also
[4, 5]). This integral family arises when considering the
nonrelativistic limit of Quantum Chromodynamics.

The analytical structure of the sunrise topology
considered in [1] was studied using differential equa-
tions in [6–10] and using the effective mass analysis in
[11–13] (see the recent review in [14]). Moreover, this
integral family admits a closed-form solution in terms
of -hypergeometric functions, as shown in [3] (the
corresponding off-shell diagrams with equal masses
are much more complicated and their explicit solution
requires hypergeometric Appell functions  [15]). In
[1], we obtained an expression in terms of eMPL, valid
for all orders of the dimensional regulator1.

THE SUNRISE INTEGRAL
Following [3] we study the sunrise integral topol-

ogy defined as,

(1)

with . As it was observed in [1],
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and  is defined as,

(4)1 Similar results in more complicated cases can be found in
[16‒19].
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while the factors  represent the relevant integrals,

(5)

with

(6)

We remark that integral  has a finite  expan-
sion. Other sunrise integrals,  and , consid-
ered in [1], contain singularities but their consider-
ation is beyond the slope of this short paper.

ALL ORDERS RESULT IN TERMS 
OF ELLIPTIC POLYLOGARITHMS

We are interested in the computation of iterated
integrals of the form,

(7)

where  are rational functions of their arguments and
 is an elliptic curve,

(8)
All iterated integrals of the form (7) can be

expressed in terms of eMPLs:
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By construction, the kernels  have at most
simple poles, and they are (see [20] for a detailed dis-
cussion)

(10)

where

(11)

Moreover we define,

(12)

where  and  are vectors with elements equal to  and
 respectively, and .

EMPLs are a generalisation of MPLs defined
recursively as,

(13)

and,

(14)

By definition we see that MPLs are a subset of
eMPLs,

(15)

As with all iterated integrals, eMPLs satisfy a shuf-
fle algebra with the shuffle product defined as

(16)

The vector  is the vector obtained by shuffling all
 and  while preserving the order of the elements 

and  respectively.

REGULARISATION
As we will see below, we are interested in comput-

ing definite integrals of the form,
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In some cases, the primitive is ill-defined when
evaluated on the boundaries of integration, and two
constraints must be satisfied in order to evaluate the
definite integral:

(18)

COMPACT REPRESENTATION
The analysis in [1] implies that all integrals are for-

mally evaluated as

(19)

where  are some coefficients,  are combina-
tions of eMPLs of depth one, while  are combi-
nations of integration kernels. These integrals can be
directly computed in terms of eMPL by shuffle
expanding the eMPL products of the integrands and
recursively using the definition of eMPL.

To make the notation more compact and to make
the properties of the result in terms of eMPL clear, we
use the following notation for double integrals of (19).
Denoting the primitive  as  and defining
the bilinear -operator as,

(20)

we can write (19) in the following form

(21)

where all eMPL products are shuffle expanded before
the  operator is applied, and these operations are per-
formed on the inner square brackets first. Finally, the
lower and upper scripts applied to the square brackets
indicate the following operation:

(22)

THE INTEGRAL 
We show how the solution strategy of the previous

section works in practice by considering the integral
 in Eq. (5). The dependence on the elliptic curve

is made explicit by changing the variable ,
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where the inner integral can be expressed as
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All the -powers are expanded in :

(25)

The resulting logarithm is Кn be expressed in terms
of eMPLs as

(26)

where . The integrand can be written in
terms of the integration kernels:
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where we denoted with  the four roots of the elliptic
curve,
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Upon integration we find,
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Finally, all prefactors can be expressed in terms of
integration kernels
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By taking the primitive of Eq. (30) we obtain,

(31)

Applying these methods to all relevant logarithms
and prefactors, we get the result in terms of integrals of
the form (19), which are directly evaluated in eMPL,
for example, by Eq. (21):
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where,

(33)

CONCLUSIONS
In this short paper, we have shown the main stages

of the study [1] of the sunrise integral  with two
different internal masses and pseudothreshold kine-
matics in dimensional regularization. This integral
admits a closed form solution in terms of hypergeo-
metric functions [3], and we have used this represen-
tation as the starting point of our analysis. In particu-
lar, in [1] we shown that all relevant hypergeometric
functions can be represented as iterated integrals
depending on one elliptic curve (see also Eq. (5)).
When these integrals are expanded in terms of a
dimensional regulator, the expansion coefficients are
iterated integrals in terms of rational functions on the
corresponding elliptic curve with at most simple poles.
Calculating  in Eq. (5), we have shown a way to
represent the sunrise integral  in terms of
eMPLs, which is true for all orders of the dimen-
sional regulator.
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