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Abstract—The Hawking temperature for Schwarzschild black hole is , where  is the black hole
mass. For vanishing mass one gets infinite temperature. This effect is called the black hole explosion. We dis-
cuss the origin of blow up of the temperature and suggest the ways of how to resolve this problem. We consider
the Schwarzschild, Reissner-Nordstrom and also others black holes.
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1. INTRODUCTION
There are fundamental problems in theoretical

physics that we have been trying to understand for
centuries. One such problem is whether general rela-
tivity can be reconciled with quantum field theory.
Already in the approximation dealing with classical
gravity and quantum massless field one get problems.
It was discovering by Hawking that the Schwarzschild
black hole produces radiation like black body.

More specifically, we will discuss the problem of
the black hole explosions which is a result of Hawking
radiation of black holes. First we will describe what is
the black hole explosion problem. The temperature of
radiation is inverse proportional to the mass of the
black hole. In the process of radiation the mass is
decreasing and the temperature is increasing. That are
the entropy of radiation and its energy density go to
infinity. This is clearly nonphysical. This problem has
been mentioned by Hawking in his first publication
about black hole radiation [1].

Note also, that there are different options how we
can try to resolve this problem. For instance one can
argue that one should use the quantum gravity or stop
investigation in the Planck scale or include in consid-
eration a modified gravity etc.

In this talk we will consider a viewpoint that com-
plete evaporation is possible. Such point of view is
shared by Hawking, Page, Susskind, Maldacena and
others. In such an approach we have to explain how to
use the semi-classical effective theory of gravity to
describe the complete black hole evaporation without
blow up of the temperature. Note the recent works on
the so-called island approach to the entanglement
entropy do not get a solution to this problem [4].

Note that the Schwarzschild metric is regular in the
limit  there we get the Minkowski space. In [2]

it is pointed out that the origin of the singular
behaviour of the black hole temperature maybe lie in
application of the Kruskal coordinates which are sin-
gular for vanishing mass. It has been suggested that by
the using another coordinates, the so-called thermal
coordinates, it is possible to overcome the problem of
getting infinite temperature at .

In the case when there are charges, rotation, non-
zero cosmological constant, there is other option: one
can impose constraints on characteristics of BHs. In
particular, we can consider the charged RN BH and
demonstrate that if one impose a certain relation
between mass and charge then we can avoid the blow
up of the temperature. Similar results take place for
Kerr, dS-Sch, etc. [3].

2. THERMAL COORDINATES 
OR OBSERVE RUNNING AWAY

The Schwarzschild metric in the Schwarzschild
coordinates is

(1)

where . It is obvious that the
exterior Schwarzschild spacetime ( )
admits the  limit, that defines the Minkowski
spacetime.

The Kruskal coordinates are defined as usual as
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, and the Schwarzschild

metric becomes

(2)

Note that the Kruskal coordinates and metric (2)
are singular in the limit .

We introduce new coordinates as

(3)

These coordinates are specified by parameter  and
we call them thermal coordinates (or E-coordinates).
The Schwarzschild metric in these coordinates is
( )

(4)

It is clear that in the limit  the metric in (4),
rewritten as

(5)

becomes the Schwarzschild–Kruskal metric (2). At
 the metric (4) becomes

(6)

Let us stress that in the previous considerations, we
do not change the mass of the Schwarzschild black
hole. We keep the original Schwarzschild metric with
mass  and just rewrite the metric in new coordinates

, . This is clear from the
formula below

(7)
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Therefore, the Schwarzschild metric in both forms,
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with mass , but the Minkowski metric. Indeed, in this
case  and

In our consideration the parameter  is an arbitrary
positive parameter. Physical meaning of thermal coor-
dinates is that they describe an observer who moves
with non-constant acceleration depending on the
parameter , see Section 3.3 in [2].

To show this let us introduce the coordinates
 and  and rewrite the

metric as

(9)

Now let us fix . This trajectory can be
parametrized by  and in the Schwarzschild coordi-
nates we have

(10)

For the acceleration along this trajectory we have

(11)

For  we get , that in term of

Schwarzschild time  is

This answer is similar to the Rindler acceleration
discussed by Unruh (see more detailed discussion in
Section 3.4 in [2]).

To find the temperature of Hawking radiation of
Schwarzschild black holes in thermal coordinates let
us consider the wave equations for the scalar field

 in these coordinate systems
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. For the real right mode (for
the left mode all consideration is similar and will be
omitted) one has

(13)

where . One also has representation
for -field  where for
right mode(similar for left ones)

(14)

where . Right (and left) modes in
different coordinate system are related

 and therefore,

(15)

Multiplying (15) on  and integrate the first
equation over  one gets1

(16)

where

(17)

The thermal-vacuum  does not contain  par-
ticles, i.e. , but it contains the Minkowski 
particles:

(18)

The Bogoliubov coefficient  are given

(19)

1 For  we get the standard formula for the Schwarzschild
metric in the Kruskal coordinates.
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PHYSICS OF PARTIC
Using the formula  we get
he Planck distribution

(20)

with the temperature [2]

(21)

This temperature at  is  and its
corresponds to a non-inertial observer in Minkowski
space.

Let us make few remark about information para-
dox. Note that in semi classical approximation it is
impossible to give a sharp formulation of the informa-
tion loss problem, since it would required an investiga-
tion of black hole formation from a pure state and also
a description of an evaporation process in term of
quantum gravity.

We can have in mind a vague formulation of the
problem that we can often see in the current literature.
In a such style we can say that in the case of using the
E(thermal)-coordinates the black hole life time is
infinite. Therefore, formally speaking, the informa-
tion loss paradox disappears. Sometimes the informa-
tion paradox is formulated as follows. A collapsing
black hole, described by a wave function, completely
evaporates and leaves only radiation, described by a
dense matrix. So one gets a transformation of pure
state to a mixed state, that contradicts to the unitary
evolution in quantum mechanics. Thus, a transforma-
tion of a pure state into a mixed one is occurred, which
contradicts the unitary evolution in quantum mechan-
ics, and means the loss of information. This formula-
tion of the information lost paradox has a meaning
only if the black hole time life is finite. In the case of
using the E-coordinates the black hole life time is
infinite. Therefore, formally speaking, the informa-
tion loss paradox disappears.

It would be interesting to estimate the entropy bal-
ance during the evaporation in the thermal coordi-
nates. It would also be interesting to study the fate of
primordial black holes in the thermal coordinates and
to use the thermal coordinates for investigation of
massive fields of various spins in different dimensions
in gravitational backgrounds.

3. COMPLETE EVAPORATION 
NEAR EXTREME REGIME

We consider a model of complete evaporation of a
Reissner–Nordstrom (RN) black hole with the fol-
lowing metric

(22)
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Fig. 1. (a) The 3D plot shows the dependencies of the temperature on the mass  and the charge . 3D curves  show the

dependence of the temperature on the mass along the constrains (25) with , . (b) The graph shows
charge  (magenta) and temperature  (red) versus  for different values of the scaling parameter , . (c) The graph
shows dependencies of free energy  (green), black hole entropy  (blue) and radiation entropy (dark cyan) on  for scale
parameter . The black lines show the boundaries of the allowed regions for .
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here  and  are mass and charge of the black hole
(two independent variables). It is assumed that

. The blackening function in (22) can be pre-
sented as

(23)

The temperature of the Reissner–Nordstrom black
hole is

(24)

Let us take  to be a function on  of the form
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where . The Hawking temperature 
under this constraint becomes equal to
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Depending on the behavior of the function 
we have:

• if  satisfies for small  the bounds
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evaporation of black hole;
• if the function  satisfies the bounds
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then the temperature  also for ;
• if the function  is

(29)

then the temperature  and  also for
. Note that the asymptotic of  at 

coincides with the Schwarzschild case.The entropy
and the free energy under constraint (25) are equal

(30)

Note that entropy  and free energy  go to 
as  for  satisfying (27).

Equation (24) defines the surface  of the state
equation for Reissner–Nordstrom black hole. This
surface is shown in Fig. 1. The 3D curves in Fig. 1
show the dependence of temperature on mass along
the curves

(31)

with different . We see that on some
curves the temperature tends to infinity as  (for
these curves ), while on curves with  the
temperature tends to zero as .

Mass dependence of charge , temperature ,
entropy and free energy at (31) with different  param-
eters and the same  parameter are shown in
Figs. 1b and 1c. We see that for all  there is a
restriction on , . The temperature and
entropy of the radiation tend to zero at  for
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, to a nonzero constant for , and to infinity
for . In this case, the temperature and radiation
entropy  at , starting from the initial value at

, increase to a certain maximum value, then
decrease to zero, i.e. the mass dependencies  and 
have deformed bell shapes (the thickest red and dark
cyan lines in Figs. 1b and 1c, respectively). In the case
of a slow dependence of mass on time during black
hole evaporation, the dependence of radiation entropy
on mass, represented in Fig. 1b by the dark cyan line,
leads to the Page form of the time evolution of radia-
tion entropy. The entropy of a black hole and the free
energy tend to zero at  for all values of . We
also see, Fig. 1b, that the shape of Q versus  is a
deformed bell (except in the case of  and ,
which corresponds to the Schwarzschild case). Note
that in Fig. 1c one can see that the free energy
increases as the black hole mass decreases. This corre-
sponds to the region , where the charge increases
with decreasing mass .

The loss of the mass and charge during evapora-
tion of RN black hole is a subject of numerous con-
sideration [5, 6] and refs therein. In the case of fixed
relations (25), we consider the following system of
equations

(32)

where  is a positive constant and the cross-section 
is proportional to  for small . The first equation
in the system of Eqs. (32) coincides with the equation
considered in [6], and the second is obtained by simply
differentiating the relation (25). From (32) we get

(33)

For  and small  one gets

(34)

This equation for  and  has a
solution

(35)

where  and  are positive constants. For  we
have  and one gets an infinite large time
of the complete evaporation of charged black hole
under constraint (25).
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