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Abstract—In quantum field theory, we discuss the main features of the (non-local) contour gauge which
extends the local axial-type gauge used in most approaches. Based on the gluon geometry, we demonstrate
that the contour gauge does not suffer from the residual gauge. We discuss the useful correspondence between
the contour gauge conception and the Hamiltonian (Lagrangian) formalism. Having compared the local and
non-local gauges, we again advocate the advantage of the contour gauge use.
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1. INTRODUCTION
Since any gauge theories can be considered as the

systems with dynamical constraints, it is difficult to
overestimate the role of gauge conditions which are
nothing but the additional constraints appeared in the
Hamiltonian formalism. As well-known, the gauge
theory can be consistently quantized if it is possible to
uniquely resolve all constraint conditions eliminating
the unphysical degrees of freedom. However, in the
Hamiltonian (Lagrangian) approach, the constraint
conditions with respect to the generalized momenta
and coordinates have, as a rule, very nontrivial forms
and, hence, finding unique solutions of these equa-
tions is not a simple task. It sometimes becomes even
impossible in some cases due to the presence of the
Gribov ambiguities.

Fortunately, as it is known for many years, it turns
out that the infinite group orbit volume, which leads to
the problem with quantization, can be factorized out
to the insubstantial normalization factor thanks to the
gauge invariance property of the corresponding
Lagrangian (or Hamiltonian) of a theory [1]. The
mentioned infinite volume that has been included in
the factorized prefactor of the functional integration is
now not the principle obstruction for the quantization
of the gauge theory.

Nowadays, only the local type of gauges can tradi-
tionally be called as the most popular gauges used for
the practical applications. At the same time, some of
useful local gauges, for example the axial-type of
gauges, might suffer from the residual gauge freedom
which, in its turn, can ultimately give rise to the spuri-

ous singularity. In contrast to the local (axial) gauge
condition, the use of contour gauge, as a class of non-
local gauges, allows us indeed to fix completely the
gauge freedom in the most simply form without an
additional assumptions. In this case, there is no the
residual gauge freedom unless the boundary condi-
tions for gluons relate to the non-trivial topology (see
also [2]).

Notice that this complete gauge fixing is provided
by the construction of contour gauge from the very
beginning. Indeed, within the contour gauge concep-
tion the gauge orbit representative should be first fixed
and, then, a certain local gauge condition which is
correlated with the given (gauge) orbit representative
should be searched. In some sense, the opposite logic
of the gauge fixing compared to the use of usual local
gauges takes place.

Among the modern phenomenology theorists,
there is such a prejudice that the study of any non-
local gauge conditions in QCD is not attractive
because specific contour-gauge techniques adopted
for the QCD phenomenology are very complicated
and the efforts to study the differential geometry
details cannot be requited. In the present short paper,
we attempt to break this superficial and wrong impres-
sion. Namely, the differential geometry technique and
the interpretation of gluons as a connection on the
principle fiber bundle are merely needed (a) for the
demonstration that with the help of the contour gauge
the gauge freedom can be uniquely fixed upto the
residual freedom; (b) for a proof of the fact that in the
local gauge, given by , two different representa-+ = 0A
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tions of transverse gluon field through the strength
tensor, related to the integrations from  to  and
from  to , are actually not equivalent ones. We
stress that without the contour gauge which is more
general in comparison with any axial local gauges, it is
not possible to distinguish these two different repre-
sentations. At the same time, the assumption of equiv-
alence leads to many problems, for example, with the
gauge invariance of Drell–Yan-like hadron tensors.

Since the interest to the details of contour gauge
applications increases in the phenomenological com-
munity, it is worth to make public the important sub-
tleties based on the mathematical technique adjusted
to the physical language. Moreover, we focus here on
the important explanations which are being remained
untold ones in the preceding publications. On the
other hand, since in the recent literature one can still
find a wrong representation of the transverse gluon
field through the strength tensor considered in the
local axial gauge, we treat this fact as a lack of explana-
tion of what means the contour gauge and of how to
use it. All these underlie our motivation of the present
paper.

In the first part of the paper, in order to clarify the
main features of contour gauge as a gauge without the
residual gauge freedom, we shortly remind the ele-
ments of Hamiltonian and Lagrangian formalisms of
quantization. Actually, the Hamiltonian formalism
might be considered as something useless from the
point of view of phenomenological applications. But,
on the other hand, the Hamiltonian formalism is a
more convenient frame to understand the contour
gauge in the context that how the contour gauge con-
dition defines the manifold surface crossing over a
group orbit of the fiber uniquely. Meanwhile, there are
no doubts that the Lagrangian formalism is assumed
to be better designed for the practical applications. We
combine both formalisms depending on the current
goals.

The attempt to present an alternative explanations
of the contour gauge conception has been done in the
second part of the paper. Apart, we also implement a
comparative analysis of the local and non-local gauges
of axial type.

2. THE LAGRANGIAN 
AND HAMILTONIAN SYSTEMS 

WITH THE DYNAMICAL CONSTRAINTS

As well-known, the local axial gauge, , suf-
fers from the residual gauge freedom demanding the
additional requirements to fix it. In the most cases, the
formulation of additional requirements is not a trivial
task within the Lagrangian system. Indeed, if one
demands simultaneously , the maximal
gauge fixing is got no problem in a classical theory

x +∞
−∞ x

+ = 0A

+ −= = 0A A
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only. However, in a quantum theory, the simultaneous
conditions  and  as delta-function argu-
ments in the corresponding functional integration
(which lead to the effective Lagrangian with 

and ) result in the absence of the well-
defined gauge propagator because the corresponding
kinematical operator cannot be inverted. In this con-
nection, it is necessary to establish an alternative
method of gauge fixing compared to the classical
approaches with the effective Lagrangian including
both  and . The contour gauge conception
gives us such an alternative and effective method.

To better understand subtleties related to the con-
tour gauge, it is worth to remind the main stages of the
Lagrangian (L-system) and Hamiltonian (H-system)
approaches to the quantization of gauge fields (see, for
example, [3]). In this section, we use the textbook lan-
guage to show that the H-system is the most adequate
approach in order to demonstrate the gauge-field
quantization “philosophy” with the resolved addi-
tional constraints. However, due to the special role of
a time-coordinate in H-system, the L-system is more
suitable for a practical use. In other words, the H-sys-
tem is needed for a help to see how the contour gauge
fixes uniquely the total gauge freedom, but the main
computation procedure has been formulated in terms
of L-system.

2.1. H-System with Dynamical Constraints

Let us consider the H-system, defined by ,
where the phase space  has been formed by the gen-
eralized momenta  and coordinates  and, in addi-
tion,  constraints on  and  have been imposed.
Traditionally, these  constraints are denoted as

 and .

We suppose that the H-system we consider has an
equivalence orbit which is nothing but the gauge group
orbit in the gauge theory. Since the phase space  is
overfilled by unphysical degrees, in the most ideal
case, we have to resolve all the constraints. The addi-
tional constraints  are necessary to fix
uniquely the orbit representative in order to quantize
the H-system. After resolving all constraints, we deal
with the quantized H-system where the physical phase
space  of dimension  is a subspace of the
initial space  of dimension  and is a fundament for
H-system in terms of physical configurations,

.

Hence, in terms of the functional integration, the
amplitude between the initial  and the

+ = 0A − = 0A
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Fig. 1. The H-system with unresolved and resolved con-
strains. The left panel represents the system with the inner
(gauge) symmetry; the right panel corresponds to the sys-
tem with the fixed (preferable) site  on the ball surface.
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final  states takes the following form
(modulo the unimportant normalization factors) [1, 3]

(1)

where  denotes the Poisson brackets.
As usual, the delta-function  of Eq. (1) can be

presented through the integration over the Lagrange
factor  as

(2)

giving the generalized Hamiltonian of system which
reads

(3)

If we now suppose that the constraint conditions
(see the delta-function arguments) have somehow
been resolved, the amplitude is given by the following
functional integration

(4)

where only the physical generalized momenta and
coordinates are forming the integration measure and
the Hamiltonian. In other words, the generating func-
tional of (4) corresponds to the H-system with the
dynamical constraints which have been resolved and,
therefore, there is no a (gauge) freedom associated
with the arbitrary Lagrange factor . It would be an
ideal situation which, as known, cannot be realized
practically in the most of cases. However, the contour
gauge as a class of non-local gauges gives a possibility
to realize practically the mentioned ideal situation
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because the contour gauge condition has a unique
solution by construction, see below.

It is instructive to illustrate the difference between
the H-system with unresolved and resolved constraint
conditions with the help of a trivial mechanical exam-
ple (see Fig. 1). Let us consider the homogenous ball
which moves from the point  to the point . The ball
has a spherical symmetry under the rotation around
the inertia center. For the simplicity, we focus on the
rotation of the ball in some plane. Since the ball sur-
face is homogenous, we do not have a chance to
observe the rotation of the moving ball unless we mark
some point on the surface. The invisible ball rotation
around its center of inertia corresponds, roughly
speaking, to the inner (gauge) transformations of the
H-system and does not affect much the trajectory pro-
vided the angle velocity is constant, see the left panel
of Fig. 1. In this case, the inertia center plays a role of
“physical” configurations of the H-system, while the
moving of different sites on the ball surface is invisible
and relates to the “unphysical” configurations.

If we mark the site on the ball surface by a dash, we
break down the rotation symmetry in the meaning of
that we choose the preferable site of the ball surface
and the ball rotation becomes visible. Therefore, in
this case, we can describe the moving dash together
with the inertia center as “physical” configurations of
the H-system when the ball position varies from  to

, see the right panel of Fig. 1.
In the context of the contour gauge conception, the

marked dash on the ball corresponds to the certain
gauge function  of the photon (gluon) gauge trans-
forms which has been fixed by the contour gauge con-
dition. Moreover, in the above mentioned ideal case of
resolved constraints, we would merely deal with the
photon (or gluon) as a massless vector field (trans-
forming as a spinor of -rank under the Lorentz
group) which is described by the Hamiltonian without
the gauge transforms.

Notice that the Abelian and/or non-Abelian gauge
theory can be treated as the H-system where the
amplitudes of the state transitions take the forms
which are similar to Eq. (1) provided the following
correspondences between the canonical variables and
the dynamical constraints (see below)

(5)

2.2. L-System with Dynamical Constraints 
and Its Connection with H-System

In the most typical gauge theories, resolving the
additional (gauge) conditions is not a simple task. The
gauge conditions, leading to the equation system for
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the gauge function , would have an unique solu-
tion . In fact, it might be practically impossible.

To avoid the need for finding the unique solution
, Faddeev and Popov have proposed the approach

(FP-method) where the infinite group orbit volume
can be factorized out to the insubstantial normaliza-
tion factor thanks to the gauge invariance property of
the corresponding Lagrangian (or Hamiltonian) of
theory [1].

For the sake of simplicity, we are now going to
dwell on  gauge theory. The H-system can be
readily stemmed from the Lagrangian formalism of
first order where the Lagrangian is defined as

(6)

with  and  being independent field configura-
tions. The Lagrangian of Eq. (6) can be written in

-dimensional form as

(7)

where  and  imply the generalized momenta
and coordinates, respectively;  are the
implicit variables in the integration measure, see
below. From the Euler–Lagrange equations we can get
the equations which do not include  and give the
constraint conditions written in the forms of

(8)

As well-known, any gauge theory can be consid-
ered as the theory with the constraints which are
applied on the field configurations. Moreover, the
constraint conditions of Eq. (8) have to be completed
by the additional (gauge) conditions, for example

(9)

From the theoretical point of view, the full set of
conditions defined by Eqs. (8) and (9) should elimi-
nate all unphysical degrees of freedom for the correct
quantization of H- (or L-) system.

Using the FP method, we adhere the functional
integration approach to quantization of gauge fields
and start from the functional integration written for
the L-system as [3]

(10)

where the infinite group orbit volume given by 
has been factorized out in the integration measure due
to the gauge invariant action  and functional
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. Hence, the exact magnitude of the group vol-
ume prefactor, i.e.

(11)

is irrelevant because the prefactor should be cancelled
by the corresponding normalization of Green func-
tions.

In Eq. (11), the infinite group volume corresponds
to the standard case of unresolved gauge conditions,
while the zero group volume appears in the case of
resolved gauge conditions. The latter is a principal
observation of this section. Indeed, the integration
measure  can be defined on the group manifold
as an invariant measure,

(12)

 denotes the product of the invariant
measures defined on the structure group  of fiber
over each point of the Minkowski space. If the gauge
function  is not fixed, we have the infinite integration
over the group invariant measure, otherwise (that is, if
the gauge function  is somehow fixed) the integration
is equal zero for each point of the Minkowski space but
the value of fixed  can vary from one point to
another.

Equation (10) can be identically rewritten as

(13)

where the functional of action  is given the
Lagrangian of Eq. (6). Focusing on the three-dimen-
sional forms, we obtain that the functional integration
is given by

(14)

where  is now defined by Eq. (7). Integra-
tions over  and  in Eq. (14) lead to the following
functional integral:
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where the Hamiltonian is given by
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where the primary and secondary constraints together
with the gauge conditions of Eq. (9) have been explic-
itly shown in the functional integrand. This represen-
tation of H-system resembles the functional integra-
tion presented by Eq. (1).

Notice that, in H-system, it is not a problem to
write all constraints through the delta functions
because we have no needs to invert the kinematical-
like operator as it would be necessary in L-system
forming the Feynman rules. At the same time, the
H-system approach is not convenient for the practical
computation in QFT.

In conclusion, the basic reason for writing this sec-
tion in the textbook language is the following: the sec-
tion is preparing a reader for the main features of con-
tour gauge uses. Indeed, we have reminded the differ-
ences between the H-systems with and without
resolved additional dynamical constraints presenting
the mechanical illustration in Fig. 1. As well known,
within the FP-method of L- and H-systems there is
no need to find a unique solution of the system of the
additional (gauge) conditions with respect to the
gauge function . Thanks for the gauge invariance
of Lagrangian (Hamiltonian) and functional ,
the infinite group orbit volume defined by  has
been factorized out in the corresponding functional
integration measure giving a possibility to quantize the
gauge theory modulo the residual gauge problems.
However, as mentioned, if we resolve the additional
(gauge) condition with respect to , the group repre-
sentative on each of orbit can be fixed uniquely and the
factorized group integral defined through the Rie-
mann summations should be equal to zero. Since, the
group volume has been cancelled by the correspond-
ing normalization, it does not mean that the func-
tional integration of Eq. (10) disappears. This case
takes place if we use the contour gauge conception.

3. THE CONTOUR GAUGE CONCEPTION
In this section, we concentrate on the description

of the contour gauge conception which implies that
the corresponding gauge condition can be formally
resolved in order to find the unique gauge orbit repre-
sentative. A few decades ago, the contour gauge had
intensively studied due to the fact that the quantum
gauge theory should not suffer from the Gribov ambi-
guities (see, for example, [4–6]).

It states that the gauge function can be completely
fix (in the H-system, see Eq. (1)) or the unphysical
gluons can be eliminated (in the L-system, see
Eq. (10)) if we demand the path dependent functional
(Wilson path functional) to be equal to unity, i.e.

(18)

where the path  between the points  and  is
fixed. The axial (light-cone) gauge, , is a par-
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ticular case of the non-local contour gauge deter-
mined by Eq. (18) provided the fixed path is given by
the straightforward line connecting  with . By
construction, the contour gauge does not possess the
residual gauge freedom in the finite space, i.e. in what
follows the boundary gluon configurations have
assumed to be equal to zero (see [2] where it is shown
that the possible residual gauge can be located at the
corresponding boundary). It also gives, from the tech-
nical point of view, the simplest way to fix the gauge
function completely.

The contour gauge conception is closely related to
the path group formalism [7, 8] and can be traced from
the Mandelstam approach [9]. The geometrical inter-
pretation of gluon fields as a connection on the princi-
ple fiber bundle  is the underlying basis for
the use of non-local gauges. In this connection, let us
define two directions: one direction is determined in
the base  as the tangent vector of a curve going
through the point ; the other direction is defined
in the fiber and can be uniquely determined as the tan-
gent subspace related to the parallel transport [7, 8].
These two directions allow us to introduce the hori-
zontal vector defined as

(19)

where  denotes the corresponding shift generator
along the group fiber written in the differential form
and, together with the vector coefficients (connection
of the principle fiber bundle) , defines the alge-
braic vertical (tangent) vector field on the fiber [7, 8].
The horizontal vector  is invariant under the struc-
ture group  acting on the given representation of the
fiber by construction.

In , the functional  of Eq. (18) is a
solution of the parallel transport equation given by

(20)

where the fiber point  with the
curve  parametrized by . Eq. (20) being an
algebraic differential equation takes place even if  is
fixed on the group because, in this case,  while

. In this connection, the condition pre-
sented by Eq. (18) implies that the full curve-linear
integration goes to zero rather than the integrand
itself.

It can be shown [7, 8] that every of points belonging
to the fiber bundle, , has one and only one
horizontal vector corresponding to the given tangent
vector at . We remind that the tangent vector at
the point  is uniquely determined by the given path
passing through . In the frame of H-system based on
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Fig. 2. The contour gauge: the plane of  in the princi-
ple fiber bundle .

x0
x1 x

-
xn

g = 1

3(-, π|G)

= 1g
π( , )G3-
the geometry of gluons the condition of Eq. (18]) cor-
responds to the determining of the surface on

 that is parallel to the base plane with the
path. Moreover, it singles out the identity element,

, in every fibers of  (see Fig. 2). This
choice can be traced to the Lagrange factor  which
is formally fixed in H-system (see Section 2). Roughly
speaking, once the group (any) element of fiber is
fixed, we deal with the Lagrange factor  of H-system
which is also uniquely fixed. On the other hand, if we
fix the group element of fiber we fix the function theta
of gauge transforms as well. In this sense, we do not
have the local gauge transforms (or the gauge freedom)
anymore. It resembles a bit the case of spontaneous
breaking of symmetry.

Notice that the path dependent functional given by
the l.h.s. of (18) can be also gauge transformed as

(21)

where the local gauge function defined by

(22)

with the corresponding generator . From this, one
can see if the Minkowski space has been realized as a
loop space, the path dependent functional becomes
invariant under the local gauge transforms. In the gen-
eral case of arbitrary paths, imposing the condition
(18) on the r.h.s. of (21), we are able to get the different
contour gauge  with 
(see (22)). From the theoretical point of view, this new
contour gauge has the same status as the gauge of (18).
It would correspond to the different plane  in
Fig. 2 which also transects the principle fiber bundle
and, therefore, it generates the different contour gauge
condition which, generally speaking, is related to the
previous contour gauge by the local transform. How-
ever, from the practical point of view, the contour
gauge given by  is not convenient to use for
calculations because the representation of transverse
gluon field through the strength tensor has a more
complicated form compared to, for example, (53). Of
course, the physical quantities are independent on the
contour gauge choice.

Notice that since the gauge condition given by
Eq. (18) selects only the identity element of group 
on each fiber, it means that the gauge transforms have
been reduced to the “global” gauge transforms. That
is, the gauge function  becomes the coordinate
independent and is fixed . This situation is identical
to that one can see in Fig. 1 of Section 2. Namely, the
red dash on the ball surface corresponds to one partic-
ular choice of the group element fixed by the given
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contour gauge. However, if we mark the line on the
ball surface by the other dash, it would mean that we
choose the other group element fixed by the different
contour gauge. In both cases, we deal with the same
description of H-system.

Since the functional  depends on the whole
path in , the contour gauge refers to the non-local
class of gauges and generalises naturally the familiar
local axial-type of gauges. It is also worth to notice that
two different contour gauges can correspond to the
same local (axial) gauge with the different fixing of
residual gauges [10, 11]. If we would consider the local
gauge without the connection with the non-local
gauge, the residual gauge freedom would require the
extra conditions to fix the given freedom. This state-
ment reflects the fact that, in contrast to the local axial
gauge, the contour gauge does not possess the residual
gauge freedom in the finite region of a space where the
boundary gluon fields are absent [2].

4. LOCAL AND NON-LOCAL 
GAUGE MATCHING

Since the contour gauge as a non-local kind of
gauges generalizes the standard local gauge of axial
type, it is worth to discuss shortly the correspondence
between the local and non-local gauge transforms.

Let us begin with the axial local gauge defined by
. Notice that the non-local extension of this

gauge is given by Eq. (18) provided the starting point is
. The differences between the local and non-

local gauges can symbolically be demonstrated by the
following trivial example. Consider two different (not
arbitrary) vectors  and , they are different by con-
struction. We now assume that these vectors have the
same projection on the certain direction given by
another vector . From the fact that the vectors have

( )x Ag
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+ =( ) 0A x

= −∞0x

A B

N
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the same projections on the vector N, it does not mean
the equivalence of vectors  and , i.e.

(23)

In this example, the different vectors  and  can
be associated with two different contour (non-local)
gauges,

(24)

while the local axial gauge plays a role of the projec-
tions on ,

(25)

On the other hand, focusing on only the  vector
projection, there is no additional information to see
from which vectors  or  the given projection has
been performed.

Coming back to the local axial gauge, we notice
that the local gauge suffers from the residual gauge
transformations (which can lead to the spurious pole
uncertainties) till the non-local contour gauge fixes all
the gauge freedom in the finite space (see for instance
[2]). Indeed, consider the local axial gauge as an equa-
tion on the gauge function , i.e.

(26)

where  with . We can readily
find a solution of this equation which takes the form of
the undetermined integration as

(27)

or the form of determined integration as

(28)

Here,  is fixed and  is an arbitrary function
which does not depend on  and it is given by

(29)

The arbitrariness of -function also reflects the
fact that we here deal with an arbitrary fixed starting
point . We now study the residual gauge freedom
requiring both  and , we then
have

(30)

One can see that the function  determines the
residual gauge transforms. This situation takes place in
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the local axial gauge defined by the only condition
 applied for (28).

Now, we go over to the non-local gauge which in
some sense gives more information on the gauge fix-
ing. The non-local contour gauge extends the local
axial-type gauge and demands that the full (curve-lin-
ear) integral in the exponential of Eq. (18) has to go to
zero. We stress that in contrast to the local gauge where
the corresponding exponential disappears thanks to
that the integrand  goes to zero. One can demon-
strate it on the example of solutions (27) or (28).
Indeed, in the contour gauge the residual gauge func-
tion  can be related to the path dependent func-
tionals with  and  which also disappeared elimi-
nating the gauge freedom and giving the physical
gluon representation in the form of (56) (see [12, 13]
for details). That is, if we restore the full path in the
path dependent functional for a given process, we can
get that

(31)

Then, requiring the conditions as

(32)

(33)

we get that

(34)

In the contour gauge, Eq. (34) means that no the
gauge freedom has left at all. We emphasize that the
condition of (32) demands that the integrand is zero,
while the condition of (33) is imposed on the integra-
tion which leads to the corresponding representation
for the transverse gluon field (see (53), (54) and (56).
Besides, the exact value of the fixed starting point 
depends on the process under our consideration [12].

The other feature of the path dependent functional
is that it defines the path dependent gauge transforma-
tion in the form of

(35)
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where the starting point x0 is now fixed. Hence, having
calculated the derivative of  in (35), we get that (here,
for the simplicity, )

(36)

where . If we are now focusing on the case of
, we readily obtain that the gluon repre-

sentation reads

(37)

where the traditional notations

(38)

have been introduced. The representation given
by (37) is an important result for our further consider-
ations.

So, in this section, we have demonstrated that the
contour gauge gives a possibility to illuminate the
unphysical gluon components, meanwhile the local
axial gauge fixes the gauge partially leaving room for
the residual gauge freedom.

5. THE ADVANTAGE OF THE CONTOUR 
GAUGE USE

In the preceding sections, the different (mathemat-
ical) aspects of the contour gauge have been presented
in the general, even formal, manner. In this section,
we want to concentrate our attention on the certain
examples which, first, relate to the practical use of the
contour gauge and, second, demonstrate the prepon-
derance of the non-local gauges compared to the local
gauges.

As discussed in [10, 11, 13], the Drell–Yan-like
processes with the polarized hadrons give the unique
example where the contour gauge use shows the defi-
nite advantage from the practical point of view. In par-
ticular, the contour gauge use allows to find the new
contributions to the Drell–Yan-like hadron tensor
which restore and ensure the gauge invariance of the
corresponding hadron tensors [10, 11, 13]. It is
important, however, to stress that the mentioned new
contributions are invisible if we would work within the
frame in the local gauge.

In the similar manner, due to the contour gauge
conception the -process of DVCS-amplitude which
clarifies the gauge invariance of the non-forward pro-
cesses takes the closed form again [14]. From the prac-
tical point of view, it is instructive to consider the
appearance of standard and non-standard diagrams

g
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contributing to the well-known deeply virtual Comp-
ton scattering (DVCS) amplitude in the frame of the
factorization procedure. The gluons radiated from the
internal quark of the hard subprocess generate
the standard diagrams, while the non-standard dia-
grams are formed by the gluon radiations from the
external quark of the hard subprocess (see [14] for
details).

In the most cases, it is sufficient to exponentiate
only the longitudinal components of gluon field, 
and , which are related to the unphysical degrees.
Indeed, the standard diagram contributions give the
gauge invariant quark string operator which reads

(39)
where

(40)

(41)

and  stands for -matrices the exact form of which
is now irrelevant.

The non-standard diagram contributions result in
the string operator defined as

(42)
where

(43)

(44)

Hence, using the contour gauge conception, we
eliminate all the Wilson lines with the longitudinal
gluon fields  and  demanding that

(45)

and

(46)

Equations (45) and (46) give rise to the local gauge
conditions given by  and .

With respect to the Wilson line with the transverse
gluons , we remind that we work here within the
factorization procedure applied for DVCS-amplitude.
In this case, the Wilson lines with the transverse gluon
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fields are considered in the form  an expansion due
to the fixed twist-order, and the transverse gluons cor-
respond to the physical configurations of L-system.

Thus, the DVCS process gives us the example how
the unphysical gluon degrees can be illuminated from
the consideration with the help of contour gauge.

We are now going over to the Drell–Yan (DY) pro-
cess with one transversely polarized hadron [10]

(47)
where the virtual photon producing the lepton pair
( ) has a large offshelness, i.e. ,
while all the transverse momenta are small and inte-
grated out in the corresponding cross-sections .
Here, the contour gauge use results in the gauge
invariant hadron tensor and provides the new contri-
butions to single spin asymmetries. Having considered
this hadron tensor in the asymptotical regime associ-
ated with the very large , the factorization theorem
can be applied for the given hadron tensor as well as for
the DVCS process. As a result, the DY hadron tensor
takes a form of convolution as

(48)

where both the hard and soft parts should be indepen-
dent of each other and are in agreement with the ultra-
violet and infrared renormalizations. Moreover, the
relevant single spin asymmetries (SSAs), which is a
subject of experimental studies, can be presented as

(49)

where  and  are the lepton and hadron tensors,
respectively. The hadron tensor  includes the the
polarized hadron matrix element which takes a form of

(50)

where  stands for the Fourier transform between the
coordinate space, formed by positions , and the
momentum space, realized by fractions ; the light-
cone vector  is a dimensionful analog of . In
Eq. (50), the parametrizing function  describes the
corresponding parton distribution.

5.1. The Case of Local Gauge
In the studies, see for example [15–18], where the

local light-cone gauge  has been used, -func-
tion of Eq. (50) is given by a purely real function. That
is, we have
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where the function  parametrizes the
corresponding projection of  and obeys

.
In Eq. (51), the pole at  is treated as a prin-

ciple value and it obviously leads to .
Indeed, within the local gauge , the statement
on that  is the real function stems actually from the
ambiguity in the solutions of the trivial differential
equation, which is equivalent to the definition of ,

(52)

The formal resolving of Eq. (52) leads to two repre-
sentations written as

(53)

(54)

We stress that within the approaches backed on the
local axial gauge use, there are no evidences to think
that Eqs. (53) and (54) are not equivalent each other.
That is, the local gauge  inevitably leads to the
following logical scheme (see [11] for details)

(55)

This equation demonstrates that the equivalence of
Eqs. (53) and (54) causes the representation of -func-
tion as in Eq. (51). The discussion on the boundary
configurations can be found in [11].

Regarding the DY process, the physical conse-
quences of the use of  presented by Eqn. (51) are the
problem with the photon gauge invariance of DY-like
hadron tensors and the losing of significant contribu-
tions to SSAs [10, 11]. Besides, based on the local
gauge , the representation of gluon field as a
linear combination of Eqs. (53) and (54) has been used
in the different studies (see [19–21]).

5.2. The Case of Non-Local Gauge

In contrast to the local gauge , as discussed
in Section 3, we can infer that the path dependent
non-local gauge (see Eq. (18)) fixes unambiguously
the representation of gluon field which is given by
either Eqs. (53) or (54). Indeed, fixing the path

, a solution of Eq. (18) takes the form of (see
[10, 11, 22] for details)
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where the boundary configuration  has
assumed to be zero. By direct calculation, we can show
that the non-local gauge  leads to
the gluon filed representation of Eq. (53), while the
non-local gauge  corresponds to the
gluon field representation of Eq. (54). Moreover, we
can readily check that [10, 11]

(57)

where

(58)

(59)

Notice that both the non-local contour gauges, i.e.
 and , can be pro-

jected into the same local gauge . As men-
tioned, the projection given by  does not give a
possibility to understand which of the non-local
gauges generates the local gauge.

To conclude, we can state that, considering DY-
like processes, the corresponding non-local gauge
gives rise to the correct representation of -functions
(see Eq. (58)), which has the non-zero imaginary part.
This enables us to find the new significant contribu-
tions to the hadron tensors that ensure ultimately the
gauge invariance [10, 11]. In a similar manner, with
the help of Eq. (58) we can fix the prescriptions for the
spurious singularities in the gluon propagators [13].

6. CONCLUSIONS

In the paper, we have made public the important
subtleties based on the mathematical technique
adjusted to the physical language. We have presented
the important explanations and analysis hidden in the
preceding publications which should help to clarify the
main advantages of the use of non-local contour
gauges. To this goal, the combination of the Hamilton
and Lagrangian approaches to the gauge theory has
been exploited in our consideration. Since the contour
gauge is mainly backed on the geometrical interpreta-
tion of gluon fields as a connection on the principle
fiber bundle, we have provided the illustrative demon-
stration of geometry of the contour gauge. In this con-
nection, the Hamiltonian formalism is supposed to be
more convenient for understanding the subtleties of
contour gauges. Indeed, the Lagrange factor  fixa-
tion has a direct treatment in terms of the orbit group
element which has been uniquely chosen by the corre-
sponding plan transecting the principle fiber bundle
(see Fig. 2). While, as shown, the Lagrangian formal-
ism is very well designed for the practical uses to the
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eliminate the unphysical gluon degree  freedom
from the corresponding amplitudes.

Also, we have reminded the details of that studies
where the local axial-type gauge can lead to the certain
ambiguities in the gluon field representation. These
ambiguities may finally produce incorrect results.
Meanwhile, as demonstrated in the paper, the non-
local contour gauge can fix this kind of problems and,
for example, can provide not only the correct (gauge
invariant) final result but also find the new contribu-
tions to the hadron tensors of DY-like processes
[10, 11]. Thus, the use of contour gauge conception
gives a possibility (i) to find a solution of the gauge-
invariance problem, discovered in the Drell–Yan had-
ron tensor, by the correct description of the gluon pole
that is appearing in the corresponding parton distribu-
tions; (ii) to discover the new sizeable contributions to
the single-spin asymmetries which are under intensive
experimental studies.

In the context of the contour gauge use, the recent
progress is mainly related to the studies of the so-
called gluon pole contributions to the Drell–Yan-like
processes [10, 11]. However, the practical profit of the
non-local contour gauge is not limited by the study of
gluon poles which manifest in the different hard pro-
cesses. With the help of non-local gauges, we plan to
adopt the method based on the geometric quantiza-
tion [23] to the investigation of different asymptotical
(hard) regimes in QFT.
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