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Abstract—We present accurate numerical results for the one-dimensional stationary Schrödinger equation in
the case of three quantum problems: quantum harmonic oscillator, radial Schrödinger equation for a Hydro-
gen atom, and a particle penetration through the potential barrier. All of them were solved by the Numerov
method with high accuracy and we plot their wave functions using the results of numerical calculations. Fur-
thermore, we offer accurate numerical methods for solving boundary value problems, eigenvalue problems,
matrix elimination.
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1. INTRODUCTION

Numerical methods for obtaining a bound-state
solution of the one-dimensional Schrödinger equation
can be broadly classified into two types: numerical
integration (shooting methods) and matrix methods
[1]. The techniques to be described here belong to the
matrix method category. Most of the Schrödinger
equations we find in physics cannot be solved analyti-
cally [2]. Analytical solutions of the Quantum Har-
monic Oscillator and the Radial Schrödinger equa-
tions for a Hydrogen atom are well-known that allow
us to study the numerical techniques and test the accu-
racy of the suggested methods. The Numerov method
gives high accuracy results which are in good agree-
ment with analytical solutions and other methods
[3, 4]. Generally, the Shooting method in combina-
tion with Numerov approximation and the R matrix is
used to solve a boundary value problem. None of these
methods is sufficiently stable. If we use the Shooting
method directly then one of the solutions grows expo-
nentially and becomes unstable due to the rounding-
off errors. On the other hand, when we use a band
matrix technique, the solutions are always stable. And
the number of multiplications (or complexity of the
algorithm) is of the same order  as in the R matrix
solution. The stability is high when we use routines
from the LINPACK package. The transmission of
waves through a potential barrier or well is a funda-
mental problem in quantum mechanics and has appli-
cations in a wide range of practical problems [5].

Using the Numerov method we obtain a stable, accu-
rate method for calculating the transmission and the
reflection coefficients of the potential barrier. The
method is applicable to the potentials of arbitrary
shapes.

2. NUMERICAL METHODS
The Numerov method (named after Russian

astronomer Boris Vasilyevich Numerov) which is a
specialized integration formula for numerically inte-
grating differential equations to transform it into a new
representation of matrix form on a discrete lattice
depends only on the displacement of grid  and the
number of grid . The method is fourth-order ( )
accurate method of the form Eq. (1),

(1)

here  and  are value of the
function  and the solution  at the nodes of
the grid points  and  is the
distance between the nodes of the grid.

We use the following modified subroutines from
the LINPACK collections: dgbsl.f, dgbfa.f. Our main
program includes the following crucial methods:
Gaussian elimination, LU factorization, Inverse itera-
tion. Gaussian elimination and other aspects of matrix
computation are studied in detail in the book by
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Forthsythe and Moler (1977) [6] and Stewart (1973)
[7]. Our calculations were made on the main server of
BLTP (2x 8-core Xeon E5-2690 2.9 GHz, 256 GB
RAM). In our case, the Schrödinger equation is
reduced to the generalized eigenvalue problem of
the form

(2)

If matrix  is symmetric, then we can decompose
Eq. (2) into ,  decomposition, then the generalized
eigenvalue problem is reduced to the standart eigen-
value problem of the form

However, this method is too laborious (
multiplication operations) and is less resistant to cal-
culation errors. If only a single eigenvalue (eigenvec-
tor) is needed, the solution may be obtained efficiently
(  multiplication operations) with the help of
the inverse iteration method:

where scalar factor  is chosen in such a way that
. If  is close to exact eigenvalue , the vec-

tor sequence  converges rapidly to the exact eigen-
vector , and  converges rapidly to
the exact value . In order to illustrate this, one may
assume, without a loss of generality, that matrix  is a
diagonal one. The solution may then be written down
in the explicit form:

(3)

where  is a coefficient that normalizes the vector
from the right. It can be seen from Eq. (3) that all com-
ponents of vector  (except for , which remains
equal to unity tend to zero under the given normaliza-
tion conditions (for more details [8, 9]). Practical cal-
culations demonstrate that this method is also the
most resistant to rounding errors (calculation errors).

3. THE QUANTUM 
HARMONIC OSCILLATOR

The Schrödinger equation is a linear partial differ-
ential equation that describes the wave function or
state function of a quantum-mechanical system. The
stationary Schrödinger equation for the one-dimen-
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sional quantum harmonic oscillator takes the follow-
ing form:

(4)

Equation (4) has three constants including ,
we take them equal to unity in numerical calculations.
Here boundary conditions are defined as follows:

(5)

In a practical case, we do not take boundary condi-
tions at infinite points or at infinity as defined in
Eq. (5). Instead, we find solutions at finite points

, then we get  which depends on . Then
using different steps, we can extrapolate to .

3.1. Analytical Solution

There are at least two approaches for analytically
solving the Schrödinger equation for the quantum
harmonic oscillator. The first method is to decompose
in a series that is suitable for solving some differential
equations which allow analytical solutions. The sec-
ond method is the Algebraic method which is fast and
convenient to generate the solutions. Here we use the
second method to obtain the wave functions of the first
bound state and use the creation (or ladder) operator
explicitly and which listed here the general formula for
obtaining the arbitrary level of wave functions.

We use these analytical formulas to plot the first
5 wavefunctions of a quantum harmonic oscillator.
Origin 2019b is used to make the plot out as figured in
the below.

3.2. Numerical Solution

In order to numerically solve the Schrödinger
equation defined by the Eq. (4), the equation can be
reduced to the following form
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Fig. 1. Normalized wavefunctions of a quantum harmonic
oscillator for the five lowest eigenstates n from 0 to 5. The
horizontal axis shows the position of . Note that the
wavefunctions for higher  have more nodes within the

potential, . This corresponds to a shorter wave-

length and therefore by the de Broglie relationship they
may be seen to have a higher momentum and therefore
higher energy.
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Here to be more concrete, let us denote some
indexes as follows:  is nth eigenvalue,  is grid point
number,  is a step of discretization, then

Here if we use the Numerov method Eq. (1), then
Eq. (4) takes the following form.

which is in the form of
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Table 1. These numerical calculations clearly show that the or

(say, for the third state) the ratio of the errors is 

energy value rapidly convergent

Analytic solution Step N

eigenenergy eigenener

0 0.5 0.05 0.49999997

0.025 0.49999999

1 1.5 0.05 1.49999982

0.025 1.49999998

2 2.5 0.05 2.49999938

0.025 2.4999999

3 3.5 0.05 3.49999846

0.025 3.49999990

. − .

. − .
(3 5 3 4999
(3 5 3 49999

n
h

The dimension of this matrix corresponds to the
number of discretization points and different steps of dis-
cretization were used. The integration was carried out in
the interval . Table 1 shows the numerical results.
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der of the Numerov method is . More precisely, we see that

. So, decreasing the step , we get the

umerical solution Ratio
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Fig. 2. Radial wave functions of the hydrogen atom. Here
we use spectroscopic notation to represent quantum num-
bers . Note that as the energy decreases, the spatial
extent of the wavefunction increases, that is to say, the
electron is more delocalized.
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4. RADIAL SCHRÖDINGER EQUATION 
FOR A HYDROGEN ATOM

The radial stationary Schrödinger equation for an
electron in a spherically symmetric potential takes
the following form:

(6)

In our calculations, the mass of an electron  and
Planck’s constant  are taken equal to unity. The
boundary conditions for the related states are:

(7)

In practical calculations, we use  for some
large . Then we find solutions at interval , then
we get  which depends on . Then using different
steps, we can extrapolate to .
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4.1. Analytical Solution

We present a stationary one-dimensional
Schrödinger equation which is a problem almost iden-
tical to solve the radial wave in three dimensions. Here
we list the main formula for the radial wave functions
and for the total wave functions of the Hydrogen atom:

We use these analytical formulas to plot the first
3 states of the Radial wavefunction for a Hydrogen
atom. Origin 2019b is used to make the plot out in
Fig. 2.

4.2. Numerical Solution

In order to obtain the necessary form for the appli-
cation of the Numerov method, Eq. (6) can be
reduced in the following form:

Here to be more concrete let us denote some
indexes as follows:  is th eigenvalue,  is grid point
number,  is the step of discretization. Then we get

Now, if we use the Numerov method Eq. (1), then
Eq. (6) takes the following form.
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Table 2. The numerical solution of the Radial Schrödinger equation for a Hydrogen atom. Here we see that the convergence
is different in each state and we used different steps of discretization. Because under the given boundary condition we have
a singularity at 0. In this case, the order of the Numerov method  is seen only for the  state. From our analysis it follows
that the order of the Numerov method for the  state is , for the  state is , for the  state is . In addition, we compared
our results with the work (J.F. Van der Maelen Uría et al., 1996), in which they used Richardson’s extrapolation. It can be
seen that our calculation leads to more accurate results

States
Analytic solution Step Numerical solution Ratio

eigenenergy eigenenergy

1s –0.5 0.002 –0.4999986693 0.0000013307 3.9961 
0.001 –0.4999996670 0.0000003330
0.0005 –0.4999999167 0.0000000833

–0.499990 (Uría et al., 1996)

2s –0.125 0.002 –0.1249998337 0.0000001663 3.9976 
0.001 –0.1249999584 0.0000000416
0.0005 –0.1249999896 0.0000000104

–0.124999  (Uría et al., 1996)

2p –0.125 0.2 –0.1250229574 0.0000229574 7.76874 
0.1 –0.1250029551 0.0000029551
0.05 –0.1250003749 0.0000003749

3s –0.0555555555 0.002 –0.0555555063 0.0000000492 3.98651 
0.001 –0.0555555432 0.0000000123
0.0005 –0.0555555525 0.0000000030

–0.055554  (Uría et al., 1996)

3p –0.0555555555 0.2 –0.0555636419 0.0000080864 7.78173 
0.1 –0.0555565947 0.0000010392
0.05 –0.0555556873 0.0000001318

3d –0.0555555555 0.2 –0.0555555601 0.0000000046 18.5909 
0.1 –0.0555555558 0.0000000003
0.05 –0.0555555556 0.0000000001

4h 3d
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Table 3. The transmission and reflection coefficients for various incident energies. For boundary conditions  is taken
finite: . We show the ratio of  and  using 

Incident enegry Ratio Ratio 

0.2 0.1 0.988646596162 0.150259468580 15.9761 15.9703 
0.05 0.988646606866 0.150259398151
0.025 0.988646607536 0.150259393741

0.4 0.1 0.957767346784 0.287544273867 15.9307 15.9277 
0.05 0.957767420368 0.287544028772
0.025 0.957767424987 0.287544013384

0.6 0.1 0.890481828305 0.455018805609 15.8236 15.8219 
0.05 0.890481929655 0.455018607266
0.025 0.890481936060 0.455018594730

0.8 0.1 0.774941759867 0.632032648535 14.3207 14.3142 
0.05 0.774941742811 0.632032669448
0.025 0.774941741620 0.632032670909

1 0.1 0.623638080556 0.781713211146 15.9538 15.9534 
0.05 0.623637663875 0.781713543567
0.025 0.623637637757 0.781713564404

R
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5. QUANTUM TUNNELING

Here we consider numerical the Numerov method
for the accurate calculation of reflection and transmis-
sion coefficient. If a particle pass through the potential
barrier, one of two things happen: it can bounce back,
or it can penetrate the barrier. The stationary
Schrödinger equation has the following form

(8)

where potential  is taken for our numerical
studies. In our calculations, the mass of a particle 
and Planck’s constant  are taken equal unity. The
boundary conditions are:

(9)

Here  corresponds to a coefficient of reflection,
and  corresponds to a coefficient of transmission. In
the case of a free particle (no force acting on it), the
momentum value  corresponding to function Eq. (9)
and the angular wavenumber corresponds to  are

 Here we assume that the momen-

tum  corresponds to  in Eq. (9)

General solution of Eq. (8) can be represented as:
, where the functions  and

 − + ψ = ψ ,  
2 2

2 ( ) ( ) ( )
2

d V x x E x
m dx

−=
2

( ) xV x e
m



−
− −

+ +

ψ = + , → −∞.

ψ = , → +∞.

( ) when

( ) when

ikx ikx

ikx

x e A e x

x A e x

−A
+A

p
k

= ,p k = .
2mEk

p k

= .2p mE

ψ = ψ + ψ1 2( ) ( ) ( )x U x W x ψ1
PHYSICS OF PARTIC
ψ2 satisfy the following simple boundary conditions
respectively:

In order to obtain a solution determined by the
boundary conditions of Eq. (9), it is necessary to
match the solution at 4 points (by the number of
unknowns: ).

or in the matrix form:

The numerical results Table 3 shows the penetra-
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Fig. 3. The real part of the wavefunctions on both sides and within the potential barrier . The left side plot represents
the reflected wavefunction, the right side plot represents the transmitted wave function.
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the potential barrier. The transmission coefficient rep-
resents the probability f lux of the transmitted wave rel-
ative to that of the incident wave, the reflection coef-
ficient determines the ratio of the reflected wave
amplitude to the incident wave amplitude. From the
results of Table 3, we can say that the incident energy
increases the transmitted wave decreases and the
reflected wave increases. Or the incident energy
decreases the transmitted wave increases and the
reflected wave decreases. The numerical values of the
amplitude are used to plot the figure (Fig. 3). Origin
2019b is used to draw wavefunctions.

6. CONCLUSIONS
In conclusion, we do our calculations using dou-

ble-precision arithmetic and analyze the dependence
of precision of the Numerov method on the discretiza-
tion step. We can state that the Numerov method
based on the band matrix decomposition allows
obtaining accurate, stable solutions of the one-dimen-
sional Schrödinger equation for various problems of
the Quantum Mechanics. Comparing analytical and
numerical solutions to the Schrödinger equation, we
demonstrate that our realization of the Numerov
method is an efficient tool to solve Schrödinger equa-
tions numerically with high accuracy.
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