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Abstract—The results of calculation of the three-loop radiative correction to the renormalization constant of
fermion masses for non-abelian gauge theory interacting with fermions are presented. Dimensional regular-
ization and the t’Hooft-Veltman minimal subtraction scheme are used. The method of calculation is
described in detail. The renormalization group function  determining the behavior of the effective mass of
fermions is presented. The anomalous dimensions of fermions for QED and QCD up to three loops are given.
All calculations were performed on a computer with the help of the SCHOOONSCHIP system for analytical
manipulations.
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The effects determined by the nonzero quark and
lepton masses in quantum chromodynamics, the stan-
dard  model, usual and supersymmetric
grand unified theories are now attracting more and
more attention. Considerable efforts were devoted to
determining the mass of the Higgs scalar particle from
the LEP experiments. The threshold effects [1], the
light quark masses [2] and the value of the ratio 
in the frame of the grand unified theories [3] are usu-
ally investigated by the renormalization group (RG)
method [4]. Application of the RG allows one to sum
the leading momentum-dependent logarithms to all
orders in terms of the limited number of the RG
parameters (beta functions and anomalous dimen-
sions) which are calculated in the framework of per-
turbation theory.

The most characteristic feature of the mass
account is large contributions of the higher orders in
perturbation theory. For example, the two-loop cor-
rections to the ratio  [3] are 20% from the lead-
ing contribution. In the  grand unified theory
from two-loop analysis it was concluded [3] that the
number of f lavors cannot exceed six. The one-loop
approximation gives a less rigid restriction—the
number of f lavors may be less than eight. The next
approximations - the three loop and higher, can also
change this restriction. Higher corrections to the
renormalization group functions depend more
strongly on the number of quarks.

We consider the non-Abelian gauge theory with
fermions belonging to the representation  of the
gauge group G:

Here  is the ghost field,  is the gauge parameter
and  are totally antisymmetric structure constants
of the gauge group . The indices of the fermion field

 specify color ( ) and f lavor ( ), respectively. The
matrices  obey the following relations:

In particular, the values of group invariants , 
and  in the fundamental (quark) representation of

 are:

In this paper we adopt the renormalization pre-
scription by ’t Hooft [5] the so-called “minimal sub-
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110 TARASOV
traction scheme” (MS), which by definition subtracts
only pole parts in  from a given diagram. The renor-
malization constant  relating the dimensionally reg-
ularized 1PI Green function with the renormalized one

looks in this scheme like

with ,  being the space-time dimension,

 and  is the renormalization parameter
with the dimension of mass. The relationship between
the bare charge  and the renormalized one includes
the product of appropriate ’s. The most convenient
choice of ’s is as follows:

Here  is the renormalization constant of the
ghost-ghost-gluon vertex,  and  being those of
the inverse gluon and ghost propagators, respectively.
Bare parameters  and  are connected with the
renormalized ones as:

(1)

In [6] it was shown that  and  in the
 renormalization scheme are gauge independent.

This gives us a possibility to use the simplest gauge for
calculation. We choose to work in the Feynman gauge

 throughout this paper.

The Green function  in the 
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[5, 7]:
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The functions  and  can
be expressed in terms of the coefficients in front of 
in the decompositions of the corresponding renormal-
ization constants  [5, 7]:

(3)

where  is the anomalous dimension of the ghost-
ghost-gluon vertex,  and  are anomalous dimen-
sions of the gluon and ghost propagators respectively.
The coefficients in front of  for the reno-

ramlization constants  and  are related to  and
 by [5, 7]:

These relationships were used to partially verify our
calculations.

The goal of this paper is to calculate the three-loop
approximation for . The two-loop calculations
were presented in [8]. To find , it is convenient to
use the relation  that fol-
lows from the equation

, , α −

, , α −

, , α −

Γ
Γ

, , α −

∂β = μ ,
∂μ

∂γ = μ ,
∂μ

∂ αδ , α = μ ,
∂μ

∂γ , α = −μ .
∂μ

2
2

fixed

2
2

fixed

2
2

fixed

2
2

fixed

( )

ln( )

ln( )

ln( )

B B B

B B B

B B B

B B B

h m

m
h m

h m

h m

hh

mh

h

Zh

β , γ , δ , α( ) ( ) ( )mh h h Γγ ,α( )h
−ε 1

Z

( )

Γ

∂β = − = γ , α − γ ,α
∂

− γ ,α = −β − β − β − ,
∂γ = = −γ − γ − γ − ,

∂
∂δ ,α = = γ ,α ,

∂
∂ αγ ,α = ,

∂



 



(1)
1 3

2 3 4
3 1 2 3

(1)
2 3

1 2 3

(1)

3

(1)

( ) 1 ( ) [2 ( ) ( )

2 ( )]

( )( )

( )( ) ( )

( , )( )

m

h h a h h h h
h

h h h h

b hh h h h h
h

d hh h h
h

c hh h
h

γ1
γ3 γ3

νε ν ≥1 ( 2)

ΓZ mZ (1)c
(1)b

{ }

{ }

ν
Γ

ν+

ν ν+

∂ ∂β + γ ,α α + γ , α , α
∂ ∂α

∂= , α ,
∂

∂ ∂γ + β = .
∂ ∂

( )
3

( 1)

( ) ( 1)

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )m

h h h c h
h

h c h
h

h h b h h b h
h h

γ ( )m h
γ ( )m h

ψψγ = −γ ,α + γ , α2( ) ( ) ( )m h h h

−
ψψ= 1

2mZ Z Z
LES AND NUCLEI LETTERS  Vol. 17  No. 2  2020



ANOMALOUS DIMENSIONS OF QUARK MASSES 111
where

and  is the renormalization constant of the two-
point fermion Green function with the insertion

, i.e.

According to the method described in [9], for the
renormalization constants  and  we shall use the
following representation:

Here  is an operator that removes regular in 
terms

and  is the  operation for the minimal subtraction
scheme without the last subtraction applied to the
Green function , i.e.

We apply  and  operations to the diagrams of
the following type:

where  corresponds to the insertion

.

As an illustrative example we consider calculation
of the contribution to  from one of the three-loop
diagrams. For example,

The  for this diagram with the combinatorial fac-
tor and appropriate counterterms can schematically be
represented as:
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112 TARASOV
All calculations were performed on the CDC-6500
computer using the algebraic manipulation system
SCHOONSCHIP [10]. In Appendix, we present con-
tributions to  and  from diagrams with one-
and two-loop insertions, factorized diagrams and 1PI
diagrams. At the three loop level we get:

Using (1) and (3) we get

(4)

At the two loop level our results coincide with that
presented in [8]. Unlike the - function, the three-

loop contribution to γm depends on the Riemann func-

tion . The coefficient in  propor-

tional to  coincides with that predicted in [11].
For the quantum chromodynamics (  gauge
group with , , ) we have:

For completeness we present also expression for
the - function [12]:

From (4), one can easily get  and  for the quan-
tum electrodynamics, by setting , , :

The solutions of the renormalization group Eq. (2)
in the t’Hooft scheme are expressed in terms of the
effective parameters , ,  determined by the system
of equations:

The expression for  up to three loops was given
in [12]:
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Fig. 1.

Fig. 2.
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The solution for  is:

At the present time  in an arbitrary gauge at
the three-loop level is not known. But in the MS
scheme physical quantities depend only on , so for
them we can use the renormalization group at the
three-loop level.

The most interesting application of our results can
be the  ratio in the  grand unified theory
and calculation of  at three loop level in super-
symmetric theories [12].
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APPENDIX

The three-loop 1PI diagrams of the fermion prop-
agator are given in Fig. 1 and Fig. 2.

The contributions to  from different sets of the
diagrams ( ):

Figure 1:

Figure 2a:
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Figure 2b:

Figure 2c:

Figure 2d:  .

The contributions to  from the diagrams with
the insertion  were calculated simultaneously
with the diagrams shown in Figs. 1 and 2. In fact, for

the fermion propagator instead of  we used

, and after multiplication of all propagators
we kept only the part without the mass term and the
part linear in . The coefficient in front of  deter-
mines the contribution of the diagrams with the mass
insertion. For example, from the diagram

we get the following diagrams with the insertion:

The contributions to  from different sets of dia-
grams ( )

Figure 1:
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Figure 2b:

Figure 2c:

Figure 2d: 0.
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