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Abstract—The results of calculation of the three-loop radiative correction to the renormalization constant of
fermion masses for non-abelian gauge theory interacting with fermions are presented. Dimensional regular-
ization and the t’Hooft-Veltman minimal subtraction scheme are used. The method of calculation is
described in detail. The renormalization group function v,, determining the behavior of the effective mass of
fermions is presented. The anomalous dimensions of fermions for QED and QCD up to three loops are given.
All calculations were performed on a computer with the help of the SCHOOONSCHIP system for analytical

manipulations.
DOI: 10.1134/S1547477120020223

The effects determined by the nonzero quark and
lepton masses in quantum chromodynamics, the stan-
dard SU((2) x U(1) model, usual and supersymmetric
grand unified theories are now attracting more and
more attention. Considerable efforts were devoted to
determining the mass of the Higgs scalar particle from
the LEP experiments. The threshold effects [1], the
light quark masses [2] and the value of the ratio m, / m;
in the frame of the grand unified theories [3] are usu-
ally investigated by the renormalization group (RG)
method [4]. Application of the RG allows one to sum
the leading momentum-dependent logarithms to all
orders in terms of the limited number of the RG
parameters (beta functions and anomalous dimen-
sions) which are calculated in the framework of per-
turbation theory.

The most characteristic feature of the mass
account is large contributions of the higher orders in
perturbation theory. For example, the two-loop cor-

rections to the ratio m, / m, |3] are 20% from the lead-

ing contribution. In the SU(5) grand unified theory
from two-loop analysis it was concluded [3] that the
number of flavors cannot exceed six. The one-loop
approximation gives a less rigid restriction—the
number of flavors may be less than eight. The next
approximations - the three loop and higher, can also
change this restriction. Higher corrections to the
renormalization group functions depend more
strongly on the number of quarks.

We consider the non-Abelian gauge theory with
fermions belonging to the representation R of the
gauge group G:

1 a a 1 a 2 —=da a
L= _ZGquuv - E(a“A“) —-9dM'9,n
f f
+ &M AN +1Y WDy = myiy,
=1 =1

Giy = 0, A0 — 0 AL + gf AL AL,
/ / . a | .a
Dy, = au\V:’ —IigR; YA, .
Here n” is the ghost field, o is the gauge parameter

and f e are totally antisymmetric structure constants
of the gauge group G . The indices of the fermion field

v specify color (i) and flavor (m), respectively. The
matrices R’ obey the following relations:

[Ra’ Rb]_ — lfabcRc’ facdfbcd — Csab,
R'R =C,I, tr(R‘R") = 18”.

In particular, the values of group invariants C, Cp
and ¢ in the fundamental (quark) representation of
SU(N) are:

2
c=nN, c,=N-1,_1
2N 2

In this paper we adopt the renormalization pre-

scription by ’t Hooft [5] the so-called “minimal sub-
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traction scheme” (MS), which by definition subtracts
only pole parts in € from a given diagram. The renor-

malization constant Zr- relating the dimensionally reg-
ularized 1PI Green function with the renormalized one

2
T}[g%,hn@ujzlhnZQ(lJua)
i

e—0 €

X F<Q2,hB,mB,ocB,£),

looks in this scheme like

aeﬂﬂﬂ+2$%m%,
€ v=l €

withe = (4 — n)/ 2, n being the space-time dimension,

h= g2 / (475)2 and  is the renormalization parameter
with the dimension of mass. The relationship between
the bare charge hé and the renormalized one includes
the product of appropriate Z’s. The most convenient
choice of Z’s is as follows:

hB = (MZ)EhZ~1223_12~52 = (M2)8 |:h + za(v)(h)giv}
v=l

Here Z, is the renormalization constant of the

ghost-ghost-gluon vertex, Z, and Z3 being those of
the inverse gluon and ghost propagators, respectively.

Bare parameters m; and o are connected with the
renormalized ones as:

my =Z,m= m{l + Zb(v)(h)iv},
v=l1 €

- (1
Oz =250 = OC|:1 + Zd(v)(h,ot)glv}.
v=Il

In [6] it was shown that "’ (h) and 5" (h) in the
MS renormalization scheme are gauge independent.
This gives us a possibility to use the simplest gauge for
calculation. We choose to work in the Feynman gauge
a = 1 throughout this paper.

2

The Green function T’y (Q—z,h, m, ocj in the MS
i

scheme satisfies the renormalization group equation
[5, 7]

2D e 2
{Q LB 2+ 1= ] L

(2)
2
—SMAEQjL—yAha%I}[Q?thaj=0.
oo u
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Here
By = 2 2 :
au hg,mp, o.p—fixed
dlnm
Yulh) = 1 :
au2 hp,mp, op—fixed
20lno

3(h,0) = 1

b

2

hp,mp, o.p—fixed

olnZ
wmm=m2;J

hg,mp, op—fixed

The functions B(4),7,,(h), 0(h,o) and yr(h,o) can

be expressed in terms of the coefficients in front of €'
in the decompositions of the corresponding renormal-
ization constants Z [5, 7]:

B = (-2 ~1) ) = W2, 00 = Y. )
= 050 = B = Pof = Byh” — -,

1)
V) = WP = g = e, (3)
@)
8(h, ) = h% = (b0,
oc’(h, o0)
hoy = h2E Um0
Yr(h, 00 Y

where ¥, is the anomalous dimension of the ghost-

ghost-gluon vertex, y; and ¥, are anomalous dimen-
sions of the gluon and ghost propagators respectively.

The coefficients in front of l/ e’ (v > 2) for the reno-

ramlization constants Z- and Z,, are related to ¢ and
bV by [5, 71:

8 8 )
{Ben 9 oo L + 4 hoo) o
9
oh
3

Ol — 5 0 4D
{vm<h)+B(h)ah}b = 1),

These relationships were used to partially verify our
calculations.

=hL "),

The goal of this paper is to calculate the three-loop
approximation for v,,(h). The two-loop calculations
were presented in [8]. To find v,,(4), it is convenient to
use the relation v,,(h) = —Y,(h, &) + Yy, (h,0) that fol-
lows from the equation

-1
Z, =ZyyZ,
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where We apply K and R' operations to the diagrams of
3 the following type:

2
Y\le(ha a) =-u —211'1 Z\Tl\y B
ou hg,my, 0 p—fixed Iy 4@7

and Z\w is the renormalization constant of the two-
point fermion Green function with the insertion

YOy, ie.
(WO [ 4"y T0W).

According to the method described in [9], for the where  —®-  corresponds to the insertion

renormalization constants Z,, and Z, we shall use the IlT!( w(d"y.
following representation:

Zyy =1-KR'T,

Here K is an operator that removes regular in €

terms
KZb g = Zb e,

v<0

As an illustrative example we consider calculation
A '—1- KR I,. of the contribution to Zy,, from one of the three-loop
diagrams. For example,

and R' is the R operation for the minimal subtraction
scheme without the last subtraction applied to the

Green function T, i.e. The R' for this diagram with the combinatorial fac-

tor and appropriate counterterms can schematically be
R=(1-K)R'. represented as:

Substituting expressions for the one- and two-loop  we get for the diagram, counterterms with two- and
diagrams and multiplying them by appropriate KR', one-loop subdiagrams the following expression:

13,70 , 1427 113
=l=+=+ 3) |CC°
KR |:483 3¢ 12 4e 4 )J g
[Q+Q 231}CFC
48 487 16
_|:£+&+9ﬂ_11_7C(3)i|CC2
4g°  8* 8
13 223 |, 551
=|—=-="=+—=—+=-(03) |C.C>
[483 24¢% 48 sq )} d
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All calculations were performed on the CDC-6500
computer using the algebraic manipulation system
SCHOONSCHIP [10]. In Appendix, we present con-
tributions to Z," and Zy, from diagrams with one-
and two-loop insertions, factorized diagrams and 1PI
diagrams. At the three loop level we get:

Z' =1+ 1th + [iz(lcp - c)
e \2

" 1(17 tf__CF):ihch
e\4
1( 1 2)
+|=(Lc? ——Ct -CC,+-C
L;S 4 3 f F 6 F
—%(MC2
9
73 5 3 2)
——=CCr+=Cptf +=C
D rt 3 rlif 4"
(1301th 143CCF 10559C 20 .
108 12 432 27

- Crf -1 —accii+ 30 c<3>)}h3cﬁ

56 822
—2C + 8¢

9 4 9 s

£r

Z, =1-3Ch- +[ (20 21f+2CF)

+l(_ﬂ
e\ 12
1( 121
¥ cr —-3cc, - 1212
L: 9 s 2 "9

c +—tf —iCF)hZCF

Eﬁfz +6CHf - Qci) + —(—ﬁaf
€

313 1679 40 2 2)
+3Bcc, 416792 8022 29, +—C
12 " 54 27 f 3 A

11413
N (556th (Bee, 4B 0
el 81 4 324

+ 4?6ch - —CF 6L (C — CF))}h c,.

140 2f

Using (1) and (3) we get

v,(h) = —3C,h — [97 - %tf + §CFJCFh2

6
556 129 11413 , L 140 2
cf +22¢cc, -—2C +46C, 1
[2 J+ 4 " T 08 C T g r°r rf
~ 12902 4 aseanric - cF>)h o
2 4)
Yo(h1) = —Cph — (zc 2uf — CF)th
10559 ~2 1301 143 0,202
c? Loy %00 5 +3Ct
( 144 36 - g oot f*+3Cf

;CF +12CCL(3) - c z;(3))h Cr.

loop contribution to ¥,, depends on the Riemann func-
. _ A 3 . . . 5
tion {(3) = Z[:I l/ I”. The coefficient in vy, propor

tional to Cthf2 coincides with that predicted in [11].
For the quantum chromodynamics (SU(3) gauge
group with C = 3, C, = 4/3, 1 = 1/2) we have:

Vo (h) = —4h — (& _ % f) 2

(27226, 140 o)y 160
[ 3 27 s 81f] C(3)ﬂl

(1) = —‘g‘h - (_ N _f)hz
(24941 1253 26@(3))

36 18
For completeness we present also expression for
the B- function [12]:

B(h) = —(11 —%f)hz —(102 —33—8f)h3
2857 5033 325 2] 4
— | == === TN
{ 2 18 4 54 s
From (4), one can easily get y, and v,, for the quan-
tum electrodynamics, by settingC = 0,C, =1, =1:

v (h) = —3h + %}f - 719h _48LB,

Yo(h) = +1h2 L
The solutions of the renormalization group Eq. (2)
in the t’Hooft scheme are expressed in terms of the

effective parameters / , in, 0 determined by the system
of equations:

dh -  dln0 - _
= =[B(h), = 8(h,q),
i B(h) dl (h, Q)
dinm 0’
L= h), | =1In=.
dl m,( ) 2

The expression for 4 (L) up to three loops was given
in [12]:
1 _Binl B(n’L-InL) B — Bé
BL B I B BiL
By’ L  5BIn° L
- 74 + 74
BiL 2B, L
( 3BiB,Bs + 2B2)lnL O(L)
B r

2
Here L = an—2 = J. dx + an— An arbitrary inte-
A B

h(L) =

. . - 2
At the two loop level our results coincide with that  gration constant is chosen to cancel the term with 1/ L

presented in [8]. Unlike the B- function, the three-
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Fig. 1.
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Fig. 2.

The solution for ; is:

(V2B —Bovi) _BviInL
BiL B L

BIZBZYZ + BIZBSYI - B1B§YI
(B%YZ B B.Y> = BiBoviv2)

(L) = rh,(L)_g_: {1 +

+ By + BT -
2B,

- 2B,B7Y, + B%le)%

By
L,

In’ L
IE 2Bl (B Bz'Yl Bz'YZ] }

At the present time &(A, o) in an arbitrary gauge at
the three-loop level is not known. But in the MS

scheme physical quantities depend only on Z, so for
them we can use the renormalization group at the
three-loop level.

The most interesting application of our results can
be the m, /m, ratio in the SU(5) grand unified theory

and calculation of v,,(4) at three loop level in super-
symmetric theories [12].
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APPENDIX

The three-loop 1PI diagrams of the fermion prop-
agator are given in Fig. 1 and Fig. 2.

The contributions to Z,' from different sets of the
diagrams (—KR'):

Figure 1:
CF|: 72 4 1 }
—=E_Le?_2ec, +1C
gl 4 37773 s
Cp[zw 35 4 19 4 }
c*+2cc, -2c, -Z2cy -2Cpt
24 6 3" ¢ s 3 o
CF[ 233 2 . 17 7 2 43
—zE| 22202 1 Y ee ——c +22¢y
el 12 2 F 76 s
~Zewr|-Srege(Pe-a,).
Figure 2a:
G e-Ltr)+Le-Ly)
c-Ly)+ &2 Bc-1y)
12 3f e \8 6f
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Figure 2b:
Cp[ns 55 }
—=E1 10?2 Dy +
e L72 18 f 4ol
CF[ 2171 2 527 20 2 J
— =B 20?4 250 0 +2C ——t
el 432 108 4 i s
Figure 2c:

the insertion —®— were calculated simultaneously
with the diagrams shown in Figs. 1 and 2. In fact, for

the

-Gfie-Lo 4] 1]
c-1c 3c-Lc, -2
S13 6 "] ¢ 12" 3f

CF[91 5 }
c-xdc+Lc, -2
e 124 3 " 6f

Figure 2d: —2C2.C.

The contributions to ZW from the diagrams with

fermion propagator instead of ﬁ/ p2 we used

(p+ m)/ p2 , and after multiplication of all propagators

we

kept only the part without the mass term and the

part linear in m. The coefficient in front of m deter-
mines the contribution of the diagrams with the mass
insertion. For example, from the diagram

we

gra

iy

get the following diagrams with the insertion:

AN

The contributions to Z\w from different sets of dia-

ms (—KR")
Figure 1:
Cg[“c +$CCF+8CF—4th—§CFff}
e L3 3 3
CF|: 181 ,2 80 2, 34 8 }
- ZE) 200 0? — . C +8Ch + 2=2Cf +2Cpt
Cll:%CZ—MTSCCF+17C}2p—13Cff+23—0Cth:|
€

- ?Fg(s) [—-c +20C,C —16C; — 8th]

Figure 2a:

Figure 2b:

CF{WSC @th+16 2 p }

36 9

C 337 346 64 >

— ZE 22007 4 200 4 4C, ——t

8{ e 2ay vacyy f}

_ C,[18685 2 _ 1915
€

1296 324
- 95@(3)[—0 —8Cif +16C th].
€

802

OIS oy 17, 8007 }

Figure 2c:
2
G Stlec+8c, Sy |-Srp-17c 100 + 4y
g 3 €
_ &{?c +5C; ~ 181 ~1663C + 16801, |
€
Figure 2d: 0.
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