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Abstract—The reaction of the elastic electron-deuteron scattering is considered within the Bethe—Salpeter
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1. INTRODUCTION

Nowadays the interest in some different old
researches comes back to life. It happens due to
increasing capacities of different old facilities and
appearing of new ones. One of such cases is the elastic
electron-deuteron scattering, that is of interest in the
light of current upgrade of the JLab facilities up to
12 GeV. Indeed, the elastic electron-deuteron scatter-
ing is of the great interest because of deuteron being
the simplest strongly interacting system of bound
nucleons.

Especially we want to study the high energy behav-
ior of the deuteron form factors and structure func-
tions and its dependence on models of the nucleon
form factors. In such a way we are interested in reduc-
ing or improving of other factors that have to be esti-
mated, such as correct and complete representation
for the deuteron electromagnetic current and con-
structing more realistic separable kernel of interaction.
That finally would allow us to study electromagnetic
structure of bound nucleons carefully.

The relativistic two-body interaction current was
investigated for pion and other mesons form factors in
Refs. [1—-5] where different schemes of the two-body
current construction are discussed. The importance of
the relativistic two-body interaction current contribu-
tion at high energy transfer is shown.

Another investigations [6, 7] were done for the
deuteron electromagnetic form factors taking into
account two-body current within the one-boson
exchange model.

! The article is published in the original.

49

This work is aimed directly to the analysis of the
interacting part of the hadron electromagnetic current
in the sense of taking it into calculations. In the paper
we follow two works which are very close to the dis-
cussed problems, [8] and [9].

The paper is organized as: section 2 is dedicated to
the derivation of Mandelstam current in the S-matrix
formalism. In section 3 exact expressions for both
one-particle and two-particle parts of such current are
reviewed. Section 4 considers the problem of the
gauge-invariance. In section 5 and appendices of the
article you may see all technicalities that appear in cal-
culations of such current in the Bethe—Salpeter
approach. In section 6 some conclusions are given.

2. GENERAL EXPRESSION
FOR THE AMPLITUDE
OF THE ELASTIC ED SCATTERING

The S-matrix element of the elastic eD scattering
in the one-photon approximation has the form:
S = (D;outlyD;in)

= —ie, j d*Ee ™ HY(P'ME PM), M

where

HY(P'ME PM) = (P M;out|j*€)| PM;in)  (2)
€, = u(k)y, u(k)/ g’ is the virtual photon polarization
vector, P,P'(M,M") are the initial-, final deuteron
total momenta (the projection of the angular

momenta); j" is the electromagnetic current density.
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Let us express H"(P'M"E PM) in terms of the
5-point Green function:

here the functions W(¥) are introduced as follows:
o Y
ihy
Gél(xl,x2;§;y1,y2) (3) ¥y(Poxh,)=e *®,(P,x), (13)
= (0T )W) M ETO0)T() 0), _ il
where T 'is the Wick operator. Yy(Py;h)=e @y (P,y) (14)
Introducing the complete set of the eigenstates of  and their Fourier transformation reads:
the 4-momentum operator and separating the contri- .
bution of the two-nucleon bound szateowuh 0mass My ¥, (P,x),) = J' d p4 ~ip gy PNy, (15)
G?(-xlsxz;&;yla.)h) = O(min{x,,x,} - &) (2m)
x (" — max{y! y°})j PP - M2 5 d'p g
by ’ VuPyidy) =[S LTy (P pid). (16
d'p 0\q @)/ p2 2 d'P .
X 71:)3 (P (P - M d)wq)M'(P X, %) (4 Now we can change the integration variables as
x H*(P'M& PM)® (P, y,,y,) he=PR = Ep, k=P~ Ep
+ R"(x, %€ y1,32)

where R is the regular function of P'? and P°.

4 4 4
Gy(x1x2;§;y1y2) =i’ d P 2 d P 7 d p4
2Ep»(2m) 2E,(2m) (2m)
The Bethe—Salpeter amplitudes are introduced in % L]’} ¥, (P, p P, — Ep)H"(P'M3E PM)
a following way: (2m)
D (P,y,y,) = <0|T\_I’(J’1)\TI(J’2)| PM> 5 _ L —iPX+H(R-Ep)E° (17)
D, (P,y) O @ P B Epe e
_ ' N P —E,+i0
D, (P, X1, %,) = (P M [Ty(x))y(x,)|0) (6) PY Py Ep)E ’ g
=e""XP (P, x), xé— 4+ RYP'M;EPM).
1 Defying the Fourier transformation for the Green-
Y = E(Jﬁ +2), Y=YV (7)  function G; as:
40 g4 4 4
le(x1+x2), X=X — X, 8) GY(P'p"& Pp) = a’P4a'p4a’P4dp4
o2 em'em'en'en’ 18)
Rewriting 6-functions as P X—ip'x+iPY +ipy ull
o . . |x0| . Xe G5 (x,x2: & 013),
O(min{x,,x,} - & ):G(X —7—§ j, (9 we have
0 Boprong poy _ 2 v p
8(E° — max(y’. ) = e(go o _% (10) GY(P'p5& Pp) = i™¥ yo (P ps Py — Ep)
Lepag. e N7 .p _
and using the integral representation for them as X HA(PMG PM)Y 3y (P, p3 By = E )
o0 i A\ e an . T EE o~ PERE’ (19)
2z +i0
we write

2Ep(Py — Ep +i0)2Er(Fo = Ep +10)

+ RH(P'M"& PM)
. d7\’x d3P' d?\/ d3P I3 5
G (e, x3 &y =7 y

2 2E,(2m)° 21 2E ,(27)° and, therefore,
d4 ' d4
X (2n[;4 (2754 W, (P, pis A )H" (P M3E PM)

i@ (P, p)H" (P'M';& PM)D (P, p)

lim 26(P'°)6(4)(P'2 - M) (20)
0 0 (12) PP oMy

_ o (Ep A )X HPXHAE .
X T pyy (P, i, )e 750 € . x dM(P? — M})GY(P'pE; Pp).

A, +i0 In the last expression it was taken into account that

H(E pt, )Y —iPY =ik & .
x £ + RY(P'M& PM), lim YW, (P,p P —Ep) =@ y(P,p), (2D
A, +i0 P M2
lim ¥, (P,p;Py— Ep) = D ,,(P,p). 22

2 The corresponding momenta are in the Appendix A. p21_>rl;ll4§ M( P to P) M( p) (22)
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So, finally we have

D@, (P, p)S D (P, p) = —ieu lim P’
oM P M; (23)

x 8P M{)O(P")8V(P” — M) GY(Pp'sq: Pp).
The full Fourier transformation for the Green-

function G5 in the following form

4 4 ' ' [N}
em)*8“(p; + py — b — Py — @) GE(P1D5: @ P1Dy)
— '[d4x1d4x2d4y1d4y2d4&8i(pm+p;x2_p1yl_p2y2_q§) (24)
X G5 (xx:& 33,
was used in the last expression.

To make the relation (20) more clear let us intro-
duce the generalized EM current A, (the so called
Mandelstam current):

GE(pipyg; pipy) = [ d*kid*iid hod e,
X 8Ypy + py — ki = k)8 (py + py — Ky — ky)
X Gy(pip; kik )N (kiky; 4; kiky) Gy(kika; i3 ).

(25)

Asit is known the two-body Green-function G, has
the following form near the pole P=M 3 :

C P
Gy(pipy;kiky) = ————"=
4\F 11725 112 (27[:)4 P2 —Mj
X D [@ (P, p) @y (P, p)] + R(p\pi: kiks),

M

(26)

with R being the regular part, and the expression takes
the form:

d4p' d4p
em)* 2mn)*
X @ (P, A" (p', p; P, P)® 1, (P, p).

S, =-i"e,8YP -P-

27)

So, the relations between the matrix element and
the Bethe—Salpeter amplitudes and the Mandelstam
current are obtained. The form and structure of the
current will be discussed in the next section.

3. MANDELSTAM CURRENT

The procedure of obtaining the electromagnetic
current of the two-nucleon bound system is a great
problem. It is possible to implement this easily only for
the kernel that includes exchange particle explicitly.
However, there are some obstacles when we are going
to use kernels that describe effective nucleon-nucleon
interaction like a separable one. In Ref. [9] the prob-
lem was solved and the Mandelstam current that is
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suitable for any kernel of interaction had been pro-
posed. Such the current A, consists of several parts:

. N Al [2]
Ap,(papapap)_Au +Ap: (28)

A[2]

_ [2,dir] [2,exc]
" =A +Au ,

0 (29)

where Aﬂ] is the one-particle part, that corresponds to
the relativistic impulse approximation (RIA)
(if nucleon form factors are supposed to be the on-
mass-shell), which was calculated in the [10]. Values

Alz’d”] Alz’eXCJ are the direct and exchange parts of the

two-particle part Am so called the interaction current

(IC), of the Mandelstam current.
The currents are equal to

A, p P, P) = i2m)* {5(4’ (p' -p- %)

P » o (P -1 (30)
x T (2 +p,2 +p)S (2 p) + (1 HZ)},
1
Pu (31)
X f(@*) +i ;Vq g(q )
AE,dirJ(p"p;P"P) = i’e(2m) z %@
1 l=(;,2
9 32
Xj[ap 2( )(p al’ﬂu Y
X Vair(k'®, e ; Kt
ALZ,exc](p’p.; P, P') _ i2€(2n)4z f(l)(q2)
=12
(33)

1
J0 1 (9 09 W 4 0.
Pll——=(-1D | —=——=— k", kY K)dt,
X TI|;|:8P 2( )(ap, ap):|u exc( )

where T', is the vertex of yNN -interaction and

Oy = é[y“,yv]. All the momenta are clarified in the
Appendix A.
Kernels V;, and V. are defined as:
Vaie =Vo =V, Ve =2V, (34)

were V,, V] describe the most general form of the inter-
action kernel:

Vp',piP)= Y TLV(p', p; P),

T=0,1

(35)

[T, is the projector on a state with a total isospin
momentum 7.
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In the case of elastic eD scattering only the V, (fur-

ther V;, equals just to V) part contributes to the interac-
tion current. So, finally, we get the expression for the
interaction current:

A p P P) =i%e2m)' " f(q%)
1=1,2
1

x [ b”(a 9. )V(k'(” k0. Ky dt
9p op oP

0
xﬁ;”(i,,i;ij [ L )( aﬂ
dp' dp OP P 2 dp' op

We neglect the mass operator £ and put nucleons

(36)

on-mass-shell, in this case the functions f @ (qz) and

g"(q’) are exactly F"(¢°) and F,"(¢")
Pauli form factors.

— Dirac and

4. GAUGE-INVARIANCE
OF THE CURRENT

The gauge-invariance (GI) condition leads to the
zero value for the divergence of the total current:

(37)
Itisshown in [9] that in order to satisfy the GI con-

g"(Ay + A =0

dition the divergence of AE] should be equal to

igh”(p', p; P, P) = e2m* > f0(g)

1=1,2

x [V(p' FC L) V(=) Lip qr)]

(38)

Let us check that the current (36) indeed is in com-
pliance with this requirement.

Consider/ =1 and {0, z} components for simplicity.

19

2] d
39
. [aP 20p' 39)

V(k' ,k; K
28{)) ( )

where k' = p ——(1—t) k = p+2t K =P+qt
Then the divergence of the current can be written as:

gA?! = g AP — g AP (QO d 4 9

D00 4 9 90 (%0 Ny kK,

2 dk, oK, 2 ok, 2 ok,
where the following property was used
9 _9Kd _9d 2 _9kKDd_d  ag
dP 0PJK JK’ dp' dp'dk' Jk'
9 _0dkd _d
dp Jdpodk Ok’
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Let us write the total derivative of V over t:
dv _ [B_V%J,B_Vako Y ok,
dt | dK, ot ok, ot dk, ot
oV K. 9V ok’ oV Ik,
oK, ot dk’, ot Ok, ot

= q0i+@ J qo a + zi
0K, 20 20k 0K,
9: 0

+3: 0 J V.
2 9k,

(41)

+
2 ok,

Itis seen that (41) coincides with (40). So the diver-
gence can be rewritten as:

igA” = Pem’ j W = em* V() - V(1)

“2)
- e(2m) [V(p L) -V +; P+q>}

The same logic is for the / = 2 case. So it is seen
that the current (36) satisfies the equality (38), hence
the condition of Gl is fulfilled.

In the case when interaction kernel depends only
on the k'> and k> we can write:
k. k
A{fhl(i jV(k'zk)— Sy B ld g,
2\0p' Jp k'q kq|dt

where we used the following expressions:

[

0 _ 0 _y 0 _skua
. ok ok k'qdr’
p, 0k,

9 _ 9 _ kuifzﬁi.
Ip. Ok, o> kqdr

This again leads to the equation (42).

5. MATRIX ELEMENTS
OF THE INTERACTION CURRENT

Now we are able to write matrix elements in form
which is suitable for the direct calculations:

2] . d4p' d* P :
M7 (P P) = o 2 D, (P, D)0, @)
X AP D3P Py 5, @ i (P D
where
AP PP P)yyasp g, = 106 Y PG
1 1=1,2 (44)

NOYE 0 L.
x | Dy (a—a—a—PjV(k kD3 K) g0, A1

Consider the matrix element in the the laboratory sys-
tem (which we define as a rest system of the initial deu-
Vol. 15
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teron). The boosting of the BS amplitudes and kernel to
their rest systems should be done. Expressing boost oper-
ators as they described in the Appendix B we have:

e o @ fa'pa

1=1,2

M3}y (P P) =

1

X [ d1® (P, Pio)) s A (P AP (P,

(K) (45)

AO( d 9.0 M @
X Du [_ 5 _j[AYIG (K)szcz
() (/> (1) 1 2)-1
X V(k(o) > (0)> P)Glcz PiP2 plBl (K)Apzﬁz (K):|
X ® (P, p)g g,
We consider only positive-energy states (p-spins of
both nucleons equal to + %), in this case there are only

two partial-waves 3S,Jr+ and SDIJr *, which differ from
each other only by angular momentum L = 0,2.

Now the partial-wave decomposition (see Appen-
dix C) can be done. The obtained expressions are:

My (P P) = @)

LL2L3L4 M [=12

8 J ]q)L, (P(O)o,

P(O)‘)
(46)
)

xjd dedtD‘”(aa' 353P

P
D O O |,
X &, (Po, Ipl) VLng k(0)0: ‘k(()) ‘ k(())()a ;S
L ' (1)-1 " (2)-1 " (1)
Y '(p(o))“hazA (P )OHY A (P )azYzA YlGI(K)
2) g L2 .(/) L ) -1
x A ZGZ(K)Oy k0 a0, Ui (o), A (K)
(2) 1
Pzﬁz (K)Oy (p)B] B2
where the values marked as ¢ are affected by the oper-
ator bu'

Using the definition of the spin-angular functions
given in the Appendix B the final expression can be
written as

5]MH(P P) L+L2+L3+L4
(2 ) LiLLiL, 1=12
Oy 2N 44 0 4 AO( d  d.d
X @)\ d p'd p|\dtD,’ | —,—;—
I .[ " a (0) ap BP
X R(p(O)Os p(O)‘ k{éﬂé, o> o |k([) p)) . LLiL, (47)

KO RO 5 yMmm
XZ Z CDioys ko> ki) Do) masens

M" ajayazay
O () (2 1 ()
X AP0 K0, AP0 K0)vy,
» D, (D 5 (2) 1, ()
X BV (KD, B K@Dy,
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where a; = {L;,m, ,ms,|\;,V,;} and

PLO)‘)
s),

R (P<0>0"l’<0) » Posll ;S)L1L2L3L4 =0y (Pw)o’

7 ') |, D). 7, D (/)
X 0, (Pos Ipl) V 1,1,k 0y0 ‘k(()) ‘ s K0y K05

(48)

Sonn B L) A MMM M Img,
C(p(O)a _k(O) 5 k(O)’ p(O))a,a2a3a4 CL]mL] lmg, Clull\’l
22

s ims,
X CLszzlmSZ Ims, CL4mL 1’"54Clu4 1, (49)
2

Img Img
Cl“ i CL%”’L; Clu ?
MY P
X Y, D0) Y Ly, (KRG ¥, REGDY L, (Bioy)
L, P) ¥ Lm, K@) ¥ rm,, Koy 1y, (P(0)) 5

PRI
A7 (P K0) ),

(50)
= i (o)A (@) AV (K) it (k)
A’(2)(p;0)’ k;g)))v,vz (51)
= 7 (po)A(P) K2 (K) i P (ki)
BOKG, Py, = 4 ki) AV (Kul @),  (52)
BOKG, Py, = (ko) AP (KuP(-p). (53)

Actually we have to analyze the analytical structure
of the matrix elements with certain kernel of interac-
tion, because the function R has singularities. That
will be considered elsewhere in further works.

6. NON-MINIMAL CONTRIBUTION

It is important to admit that the current investi-
gated above is based on the minimal substitution
method of introduction of the EM interaction. How-
ever, it does not allow us to represent the magnetic part
of the current. In order to fix this problem let us con-
sider the non-minimal substitution with derivative of
the photonic field:

9 - 9 +ieAd,(x)—

ox,  0x,

- Yoc B oxs .
This substitution leads to the following modifica-

tion of the expression for the two-body interaction
current:

(54)

AP(p', p; P, P) = i’e2m)"
x X[ FO@8 s+ B@) o,

1=1,2

(55)

1

XJ‘ﬁ(/)( d 0.0 )V(k'(’) K. K)dt.
op' dp OP
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In this case, the functions 4, and A4, are modified
as (consider only F, — term):

ADoK, = T @A (P)[3,,0,50", |
x AV(K) i (k(()), 56)
AP k(s vy, =B DA (P)[8,0,50" 1)
x AP(K) u P (k).

In (55) we introduced F; and F, form factors,
which are exactly Dirac and Pauli form factors for
nucleons.

7. CONCLUSIONS

We have the consistent description of the Mandel-
stam current obtaining. The relativistic two-body
interaction current component of the deuteron EM
current is investigated. The procedure of the calcula-
tion of such a current in the reaction of elastic elec-
tron-deuteron scattering has been described. The
implementation of such a procedure was obtained in
the Bethe-Salpeter approach and suits for any type of
kernel of interaction. Also the non-minimal contribu-
tion to the two-body interaction current is discussed.
The calculation was done in the laboratory system.
The complete description of all technicalities was
given.

In the laboratory system:

BEKZHANOV et al.

APPENDIX A

KINEMATICS
Momenta:
P = p, + p,—total momentum of the initial deu-
teron, P> = M 5
deuteron

—relative momentum of the initial

q= (w, q)—mpm@ntum transfer, q2 =—4M jn —
convenient substitution

P'=p, + p5 = P+g—total momentum of the
final deuteron, P> = M d2
p' =21 = P2 relative momentum of the final deu-
teron

K = P + gt—total momentum for the kernel of

interaction in IC, K T

K =p-(1) %z, I =1,2—initial relative
momentum of the kernel of interaction in IC
kO =p + (=1 %(1 —1),1=12—final relative

momentum for the kernel of interaction in IC

P = (Mdao)’ q = (w7qz)a w= 2Mdna (Iz = 2Md\/ﬁ\]1 + ]
P = (M, +w,q,) = (M,(1+21),0,0,2M /1 + 1),
K = (M, +wit,q,1) = (M, (1+201),0,0,2M ;01 + 1),

sM,t) = ML+t =1)), p= (Do, P> PysP2)s P = (Do Prs Do P2
= )
kv(l) o ql _ ' w 1 ' ' ' qz 1
=p —5( -1 = PO_E( —t),px,py,pz—T( -1
)

£y
k,(Z)_ '+£1(1—t)— '+v—v(l—t) v -+q_z(1_t)
=p 5 =1 Po 7 , P> Pys Py 2

w

q:
=t
2

O _ q,_
k _p+§t_ f,anPyaPz"‘ 2

j Ist term,

w

Dy, —

tapxapy’pz - 2
2nd term,

Lorentz transformation to the rest frame:

since the matrix element is considered in the rest frame of the initial deuteron, then Py, = P and p, = p,
and the P, p notations are used below.

PHYSICS OF PARTICLES AND NUCLEI LETTERS Vol. 15 No.1 2018
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The Lorentz transformation operators:

1+ 00 4.
M, M, 1+2n 00 2ym/1+7
L= 0 10 0 3 0 10 0
1 0 o1 o | 0 01 0 ’
4 g 1e 2\/ﬁ«/1+n00 1+2n
M, M,
1+ 00 -2
M, M, 1+2n 00 —2yn/1+1n
_1 0 10 0 0 10 0
L = =
0 01 0 0 01 0 ’
_9: goq1ew | \“2MI+mo00 1421
M, M,
wt at
o 00 o 1+27 00 2m1+m7
I - 0 10 0 3 0 10 0
/0o o1 o0 | 0 01 0 ’
q.t wt 2\/17]\/1+nt 00 1+2n¢
= 001+2%
M, M,
wit _4qt
o 00 = 1+ 00 —2Jn1+n7
I 0 10 O 3 0 10 0
"]l 0 o1 o0 | 0 01 0
q.! wt 2M1+nr 00 1+2n7
—= 001+
M, M,
The Lorentz transformation of the momenta: 2nd term
total momentum P' = LP, P = r'r
1 koo = 1+ M1)py = 21+ nep, = Mni(l = 2r)
total momentum K = LK), Ko =P =L, K KD =
©x = Px
relative momentum p' = Lp('o), p('o) =L'p k((g))y =p,
@
, ' . =-2 1+ntp,+(1+2n¢ M 1+
Pion = (L+ 2y — 2T 1P, kioy. = =21+ ntpy+(1+2M0)p, — M T+t
Pox = Px relative momentum k' = L,k('(()/)), k('(()i) = Lz_lk'(”:
Poy = Py 1st term
p('O)z = _2\/ﬁ 1+ T]P(') +(1+ 27])17;
o ®
=1 +2nH)py — 24M/1 +
relative momentum k" = L,k((é;, k((é; = Lt_lk(/): O)O =( NPy \/7 nep:
Ist term -M dn(2t =3t+1)
)
kD = (1 +2m0)py — 2T+ nep, + Mt - 20) kox = Px
1(1) '
k(%;x = D« kioyy = Py
a0 ' ' [
ko =Py kisy, = =21 +n1py + 1+ 2mD)p,
k. = —2m1+n1p, + 1+ 2Mm)p, + M1+ 1 + M+ ne -1
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2nd term

kign = (1L+2n1)py — 21+ 1p,
+ M Q=3 +1)
kioy = Py

) _
k(O)y - y

ki) = 2T+ nepy + 1+ 2Mm0)p!
= M1+ 1)

APPENDIX B

LORENTZ BOOSTING
Boosting of different values:

D 1 (P, D)oa,

= AP(P)op, AP (P) o, ® 11 (Proys Po)) s
Cym (P, D)o,

_ A(l)(P)a]ﬁlA<2)(P)%BZFJM(RO),Pw))ﬁ.ﬁz’

S(l)( + (- l)al)
o,B,
P _
=A(1)(P)(x,y,S([) (%+(_1)H1p(0))75 AD '(P)S,Bn

V(D' P P oo, = APy AP (P)oy,

X V(p('o)’ Py })(0))%“/2;5152A(l)_l(P)ﬁlﬁlA(Z)_I(P)Bzﬁz'
Boost operators:

M, + Pvy,
V2M (M + Ep)

in l.s. 50 m
= \/1+2n{1 _\/1+nY3Y°}’
with Ep =M + P

AK) =

A(P) =

\/E+KW0

J2Vs(s + Ey)
in 1.s

e L

with Ex = Vs +K” and M u' = s + M (1+2n1).

APPENDIX C

Partial-wave decomposition (in the rest frame):
BS amplitude:

D 1y (P, Py, = D 0ulP0: DY (D),
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where q)a(Po,lPl):Z Sab(POalpl;S)gb(Po,lpl), and

4 = Smg N
M(p)Yle i ZmLm m LmLSmS C%M%VYLmL (p) x

uy (), u (=p),y,-
BS vertex function:

1—‘JM(Pa p)Yle = zga(pmlpl)éy‘;w(_p)ylyz'

a

Kernel of interaction:

D" vag(po:Ip; pos bl 5)

abM

X Oyiw (_p')“/ﬂz ®

V(p" p; P)Yle;Glcz =
b
(Do,
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