
985

ISSN 1547-4771, Physics of Particles and Nuclei Letters, 2017, Vol. 14, No. 7, pp. 985–992. © Pleiades Publishing, Ltd., 2017.

Desktop Supercomputer: What Can It Do?1

A. Bogdanov*, A. Degtyarev, and V. Korkhov
St. Petersburg State University, St. Petersburg, 199034 Russia

*e-mail: a.v.bogdanov@spbu.ru
Received December 9, 2016

Abstract⎯The paper addresses the issues of solving complex problems that require using supercomputers or
multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance
computing resources according to actual application needs has been a major research topic since high-per-
formance computing (HPC) technologies became widely introduced. At the same time, comfortable and
transparent access to these resources was a key user requirement. In this paper we discuss approaches to build
a virtual private supercomputer available at user’s desktop: a virtual computing environment tailored specifi-
cally for a target user with a particular target application. We describe and evaluate possibilities to create the
virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our
approach compared to traditional methods of HPC resource management.

DOI: 10.1134/S1547477117070032

1. INTRODUCTION

The notion of supercomputer as a computing facil-
ity became common after the list of so called ‘grand
challenges’ has been published. This happened in the
end of the 1980s in order to mark the necessity to fund
the research in the area of high-performance comput-
ing and communications. As known, these years
became critical for IT as first personal computers,
global networks and WWW appeared and began con-
quering the market. The question about viability of
development of computer technology in the same
trend as in previous 30 years was posed. A set of funda-
mental and applied problems vital for humanity that
could be solved efficiently only with the help of super-
powerful computational resources (in contrast with
personal computers and workstations) was formed.

Since then the list changed many times, and the
notion of ‘grand challenges’ became common. The list
contains complex problems of physics, nanotechnol-
ogy, aeronautics, biology, national security, Earth sci-
ences, power engineering, environment etc.

If we try to understand what computational means
are required to solve the grand challenge problems, then
we can come to the general conclusion about three con-
ceptual configurations that target to solve [7]:

(1) Problems of processing large and very large vol-
umes of data;

(2) Problems with large numbers of loosely coupled
tasks;

(3) One tightly coupled tasks requiring large mem-
ory amounts and high performance computational
resources.

In any case, especially in case 3, such tasks can be
considered as complex, i.e. (a) processes of substan-
tially different scale of variability are present in the
considered task; (b) the nature of the processes is
essentially nonlinear.

Calculation of complex problems, particularly
non-linear ones, has always been a challenge for com-
puter science. This challenge has always led to some
remarkable ups as well as very disappointing downs. In
our opinion, the downs are closely related to the deg-
radation of computer system architectures equipped
with multi-level data stream communication systems
that are way too complex to remain effective. Cur-
rently, the appearance of multithreaded and graphic
processors has led to similar problems.

We believe that the solution to these problems
should be complex and consist of: (a) Preparation of
specialized computer systems; (b) Development of
algorithms that take into account the specifics of mod-
ern computer systems; (c) Use of more effective man-
agement of data f lows in computing. To understand
the emerging issues, consider one of the typical
approaches to complex numerical problems. As an
example, one can consider:

⎯The finite difference method.
⎯The solution of complex problems by iterations.
⎯Application of expansions (representation of the

result via a combination of known solutions),etc.1 The article is published in the original.

COMPUTER TECHNOLOGIES
IN PHYSICS

986

PHYSICS OF PARTICLES AND NUCLEI LETTERS Vol. 14 No. 7 2017

BOGDANOV et al.

All of the methods above lead to large dimension
matrix systems (up to millions of rows and columns).
In a parallel calculation of f lows in the matrix, with big
difference of scale of the processes, unnecessary com-
putational burden occurs when calculating a slow pro-
cess. If the scale relationship does not depend on the
problem parameters, it is possible to simplify the task
greatly by using asymptotic methods. However, in most
cases it is not the case. Unfortunately, the most interest-
ing effects arise where the characteristic scales of the
described processes pass from small to large values.

From the point of view of dynamical systems the-
ory [1], the appearance of large off-diagonal terms of
the matrix is due to the wrong choice of the basis.
However, choosing the right basis, especially for non-
linear systems is a very complex task.

There is an elegant approach, associated with the
use of non-linear integral transformations [20], which
for many cases allow appropriate diagonalization of a
matrix. The central problem with this approach is that
for such transformations the inverse transformations
typically do not exist. In those cases where they can be
found we obtain the known results. As a working
hypothesis we can assume that the inverse transforma-
tion exists only for completely integrable systems [3].

Moreover, it is very important to study the cases
where the desired result is obtained without applying
the inverse transformation (for example, when we
consider the mean values of any variables or integral
characteristics that are directly used for other tasks).
However, this idea can be applied as follows. As the
core of decomposition one can use a completely inte-

grable system, and a result of its quasidiagonalization
can be substituted in the residue.

This general idea requires several steps for its
implementation, including the use of peculiarities of
modern computing devices. This article is devoted to
analysis of this issue.

2. THE PROBLEMS
OF MODERN COMPUTING PLATFORMS
Most modern calculations are performed on cluster

systems, i.e. on systems with high-performance pro-
cessors, connected by relatively slow routers and using
message passing as a primary form of interprocess
communication. In this case, even in the peer system,
this scheme leads to long delays in the data transmis-
sion and problems with scalability.

Acceleration of a cluster system may asymptotically
be represented as follows [11, 13]:

(1)

where N denotes the number of nodes, α is the coeffi-
cient representing the fraction of sequential calcula-
tions; β is the coefficient presenting the architecture
(diameter) of the system; γ is the coefficient equal to
the ratio of the rate of a node (processor) to that of a
link (link speed).

The dependency (1) is shown in Fig. 1.
A distinctive feature of this dependency is the pres-

ence of optimal number of processors for a particular
computing problem, which depends mainly on γ. Con-

= =
− + +

0
3 ,

1 α α βγ
N

N

T NS
T N N

Fig. 1. Speedup of a cluster system.

3

1

2

0 5 10 15 20

SN

N

1
()

3(1–)
2

n opt

opt

S N

N

=
α

α+

3
1–
2optN
α

=
βγ

PHYSICS OF PARTICLES AND NUCLEI LETTERS Vol. 14 No. 7 2017

DESKTOP SUPERCOMPUTER: WHAT CAN IT DO? 987

sidering the overhead increasing with the number of
processors, the speedup is not growing but falling down
after reaching this optimal number of processors.

In practice, this leads to the consequence that for
problems with large data transfer at each step (for
example, engineering applications) the scalability is
limited to a dozen or two dozen compute nodes. In
reality, the situation is even worse. In modern proces-
sors, there is a multi-tiered storage system with a large
number of cores and internal communication between
them. The user often cannot control individual cores
and implement load balancing between them. It also
leads to a more complicated formula than (1) and a
sharp decrease in scalability [20]. Therefore, the
Linux-clusters cannot be general-purpose systems.

There exist, however, some very indicative exam-
ples where Linux-based clusters presented very effec-
tive specialized systems. This is due to the adaptation
of the cluster architecture for computational algorithm
and optimization of computing processes at all stages.
Unfortunately, such adaptation/restructuring cannot
be performed every time a new problem arises. Mod-
ern computing systems are very difficult to restructure
and it is so expensive that in practical applications can-
not be used. This is due to the famous problem of
mapping of the algorithm onto computing architec-
ture. Each computational algorithm has its own char-
acteristics associated with the nature of exchanges
between computing processes. Preparing a computing
architecture that would be effective enough for every
occasion is impossible.

The history of computing, however, shows that all
the shortcomings of computer systems at all times are
compensated by effective software. We believe that at
the present stage with the help of technologies of
metacomputing, service-oriented architecture and
virtualization it is possible to obtain such a solution.
The main idea of our approach is the virtualization of
all components of a computer system to create a virtual
computer system, which is capable of displaying at
best computational algorithm. The use of a shared
filesystem and virtual shared memory is the basis of
the implementation of the paradigm of shared mem-
ory programming. This allows overcoming the prob-
lem of scalability of computing systems.

3. PRINCIPLES
OF A VIRTUAL SUPERCOMPUTER

The main principles of implementation of a virtual
supercomputer are based on the following assump-
tions [4]:

(1) Cloud is determined completely by its Applica-
tion Programming Interface (API). It is obvious from
the user point of view, but the same is true from the
point of view of different clouds interaction.

(2) Operational environment must be UNIX-like.
One of the main problems of Computational Grids is

load balancing and it is a very difficult task since the
user is cut off from the resources. Partly this problem
is solved by Problem Solving Environments (PSE).
However, in order to make it really active, many stan-
dard UNIX tools must be introduced into the API.

(3) Cloud uses protocols, compatible with popular
public clouds. Public clouds are not very useful for
complex problems and the reason for this is clear – the
more difficult problem you are solving, the more
robust tools you must use. Universal tools cannot be
used for complex problems. That is why specialized
private clouds must be built for complex problems, but
if their resources are not enough, some additional
resources can be provided from a public cloud.

(4) Cloud processes the data on the base of distrib-
uted file systems. The main problem with the public
cloud for data processing comes from the fact, that its
own file system is used on each computer in the cloud.
That prevents both processing large data sets and scal-
ing out the problem solution. To overcome this, a dis-
tributed file system should be used in the private
cloud, the type of which is determined by the nature of
the problem to solve. If we add here three ways of data
consistency providing (Brewer’s theorem) [10], we can
see that there are a lot of possibilities of data process-
ing organization out of which only a few are in use.

(5) The consolidation of data is achieved by distrib-
uted Federal Data Base (Federal DB). There are three
levels of consolidation – servers, data and resources. It
is more or less clear how server consolidation is done.
Consolidation of data is more difficult, and consolida-
tion of resources is a real challenge to a cloud provider.
We assume that the most natural way to do this is to
use Federal DB tools. Up to now we managed to do
this by utilizing IBM’s DB2 tools, but we believe that
possibilities of latest PostgreSQL release will make it
possible to work out a freeware tool for such purpose.

(6) Load balancing is achieved by the use of virtual
processors with controlled rate. New high throughput
processors make it possible to organize virtual proces-
sors with different speed of computation. This opens
the natural possibility of setting up a distributed virtual
computational system with the architecture adapted to
computational algorithm, and instead of mapping the
algorithm onto the computer architecture we will
match the architecture to the computational code.

(7) Processing of large data sets is done via shared
virtual memory. Actually all previous experience
shows that the only way to comfortably process large
data sets is to use the Symmetric Multiprocessing
(SMP) system. Now we can effectively use shared
memory tools (e.g. OpenCL) in heterogeneous envi-
ronment and so make virtual SMP. The same tool is
used for parallelization. The possibilities of a single
system image (SSI) operational environment are also
very effective.

(8) Cloud uses complex grid-like security mecha-
nisms. One of the cloud problems is security issues,

988

PHYSICS OF PARTICLES AND NUCLEI LETTERS Vol. 14 No. 7 2017

BOGDANOV et al.

but we feel that the proper combination of Grid secu-
rity tools with Cloud access technologies is possible.

4. VIRTUALIZATION
FOR BUILDING VIRTUAL CLUSTERS

Virtualization refers to the act of creating a virtual
version of an object, including but not limited to a vir-
tual computer hardware platform, operating system
(OS), storage device, or computer network resources.
It can be divided onto several types, and each one has
its own pros and cons. Generally, hardware virtualiza-
tion refers to abstraction of functionalities from phys-
ical devices. Nowadays, on modern multicore systems
with powerful hardware it is possible to run several vir-
tual guest operating systems on a single physical node.
In a usual computer system, a single operating system
uses all available hardware resources (CPU, RAM,
etc), whilst virtualized system can use a special layer
that spreads low-level resources to several systems or
applications; this layer looks like a real machine for
launched applications. Virtualization technologies
facilitate creation of a virtual supercomputer or virtual
clusters that are adapted to problem being solved and
help to manage processes running on these clusters
(see Fig. 1). The work described in this paper contin-
ues and summarises our earlier research presented in
[5, 13–18].

In our experience, the main benefit of virtualiza-
tion for high-performance computing is structural
decomposition of a distributed system into unified
entities—virtual machines or application containers—
which simplifies maintenance of the system. A new
entity can be created for each new version of the appli-
cation with optimal configuration and set of libraries,
so that multiple versions of the same software may co-
exist and run on the same physical cluster. Entities can
be copied or efficiently shared between different physi-
cal machines to create private cluster for each applica-
tion run. Virtualization can sometimes even provide
increase in application performance, however, it is not

easy achievable. Allocating a separate container for each
application allows compiling it for hybrid GPGPU sys-
tems which may or may not improve performance of an
application. However, such optimisations are possible
even without application containers. Full virtualization
gives an option of choosing the right operating system
for an application, but gives constant decrease in perfor-
mance due to overheads, which is not tolerable for
large-scale parallel applications.

Thus, for high-performance computing virtualiza-
tion is a tool that helps manage parallel and distributed
applications running on physical cluster. It allows dif-
ferent versions of the same libraries and operating sys-
tems to co-exist and to be used as environments for
running applications that depend on them.

Earlier we evaluated the capabilities given by differ-
ent approaches and virtualization technologies to
build a computational environment with configurable
computation (CPU, memory) and network (latency,
band-width) characteristics, which we call Virtual
Private Supercomputer (VPS) [15]. Such configura-
tion enables f lexible partitioning of available physical
resources between a number of concurrent applica-
tions utilizing a single infrastructure. Depending on
application requirements and priorities of execution
each application can get a customized virtual environ-
ment with as much resources as it needs or is allowed
to use.

Experiments show that using lightweight virtual-
ization technologies (para-virtualization and applica-
tion containers) instead of full virtualization is advan-
tageous in terms of performance [2], hence virtual
computing nodes should be created using lightweight
virtualization technologies only. Thus, lightweight vir-
tualization is inevitable in achieving balance between
good performance and ease of system administration
in distributed environment and as a consequence
operating system should be UNIX-like for it to work.
Load balance can be achieved using virtual processors
with controlled clock rate and process migration.
However, not every operating system supports these

Fig. 2. A testbed example with a set of virtual clusters deployed over a set of physical resources.

Host 1 Host 2 Host 3 Host 4

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VC1

VC2

VC3

PHYSICS OF PARTICLES AND NUCLEI LETTERS Vol. 14 No. 7 2017

DESKTOP SUPERCOMPUTER: WHAT CAN IT DO? 989

technologies and it should be possible to access virtual
super-computer facilities through fully-virtualized
hosts.

5. IMPLEMENTATION OF THE TESTBED

Only lightweight virtualization technologies can be
used to build efficient virtual clusters for large-scale
problems [15, 16, 18]. This stems from the fact that on
the large scale no service overhead is acceptable if it
scales with the number of nodes. In the case of the vir-
tual clusters, a scalable overhead comes from proces-
sor virtualization which means that neither para- nor
fully-virtualized machines are suitable for large virtual
clusters. This leaves only application container tech-
nologies for investigation. The other challenge is to
make dynamic creation and deletion of virtual clusters
in real time.

The test system comprises many standard compo-
nents which are common in high performance com-
puting: distributed parallel file system which stores
home directories with experiment’s input and output
data; cluster resource scheduler which allocates
resources for jobs and client programs to pre- and
post-process data; the non-standard component is
network-attached storage exporting container’s root
files systems as directories. Linux Container technol-
ogy (LXC) is used to provide containerisation, Glus-
terFS is used to provide parallel file system and
TORQUE to provide task scheduling. The most recent
CentOS Linux 7 is chosen to provide stable version of
LXC (>1.0) and version of kernel which supports all
containers’ features. Due to the limited number of
nodes each of them is chosen to be both compute and
storage node and every file in parallel file system is
stored on exactly two nodes.

To summarise, only standard Linux tools are used
to build the system: there are no opaque virtual
machines images, no sophisticated full virtualization
appliances and no heavy-weight cloud computing
stacks in this configuration.

6. EVALUATION OF THE TESTBED
To test the resulting configuration OpenMPI and

Intel MPI Benchmarks (IMB) were used to measure
network throughput and OpenFOAM was used to mea-
sure overall performance on a real-world application.

The first experiment was to create virtual cluster,
launch an empty (with /bin/true as an executable file)
MPI program in it and compare execution time to
ordinary physical cluster. To set this experiment up in
the container the same operating system and version
of OpenMPI as in the host machine was installed. No
network virtualization was used, each run was
repeated several times and the average was displayed
on the graph (Fig. 3). The results show that a constant
overhead of 1.5 second is added to every LXC run after
the 8th core: one second is attributed to the absence of
cache inside container with SSH configuration files,
key files and libraries in it and other half of the second
is attributed to the creation of containers as shown in
Fig. 4. The jump after the 8th core marks bounds of a
single machine which means using network for com-
munication rather than shared memory. The creation
of containers is fully parallel task and takes approxi-
mately the same time to complete for different number
of nodes. Overhead of destroying containers was found
to be negligible and was combined with mpirun time.
So, usage of Linux containers adds some constant over-

Fig. 3. Comparison of LXC and physical cluster perfor-
mance running empty MPI program.

4
3
2
1
0

1
8

16
24

32
40

48 96
56

64
72

80
88

No. of cores

LXC Phys.

T
im

e,
 s

Table 1. Hardware and software components of the prototype system

Component Details Component Details

CPU model Intel Xeon E5440 Operating system CentOS 7
CPU clock rate, GHz 2.83 Kernel version 3.10
Number of cores/CPU 4 LXC version 1.0.5
Number of CPUs/node 2 GlusterFS version 3.5.1
RAM (GB) 4 TORQUE version 5.0.0
Disk model ST3250310NS OpenMPI version 1.6.4
Disk speed, rpm 7200 IMB version 4.0
Number of nodes 12 OpenFOAM version 2.3.0
Interconnect speed, Gbps 1

990

PHYSICS OF PARTICLES AND NUCLEI LETTERS Vol. 14 No. 7 2017

BOGDANOV et al.

head to the launching of parallel task depending on sys-
tem’s configuration which is split between creation of
containers and filling the file cache.

Another experiment dealt with real-world applica-
tion performance and for this role the OpenFOAM
was chosen as the complex parallel task involving large
amount of network communication, disk I/O and
high CPU load. The dam break RAS case was run with
different number of cores (total number of cores is the
square of number of cores per node) and different
LXC network types and the average of multiple runs
was displayed on the graph (Fig. 5). Measurements for
4 and 9 cores were discarded because there is a consid-
erable variation of execution time for these numbers
on physical machines. From the graph it can be seen
that low performance of virtual ethernet decreased
final performance of OpenFOAM by approximately
5–10% whereas macvlan and none performance is
close to the performance of physical cluster (Fig. 6).
Thus, the choice of network type is the main factor
affecting performance of parallel applications running
on virtual clusters and its overhead can be eliminated
by using macvlan network type or by not using network
virtualization at all. More experimental results are pre-
sented in [14].

To summarise, there are two main types of over-
heads when using virtual cluster: creation overhead
which is constant and small compared to average time

of a typical parallel job and network overhead which
can be eliminated by not using network virtualization
at all.

7. MANAGEMENT OF CONTAINER-BASED
VIRTUAL INFRASTRUCTURE

The next step in using containers for building vir-
tual cluster is applying various automation and man-
agement tools that help to ease deployment and han-
dling of virtual clusters. We investigated capabilities
provided by several modern tools (Docker, Mesos,
Mininet) to model and build virtualised computa-
tional infrastructure; investigated configuration man-
agement in the integrated environment and evaluated
performance of the infrastructure tuned to a particular
test application. Docker—a lightweight and powerful
open source container virtualization technology
which we use to manage containers—has a resource
management system available so it is possible to test
different configurations: from “slow network and slow
CPUs” to “fast network and fast CPUs.”

Figure 7 shows the experimental results for execu-
tion of NAS Parallel Benchmarks (NPB) suite on dif-
ferent configurations of virtual testbed (Class W:
workstation size; Classes A, B: standard test problems,
4X size increase going from one class to the next).
With NPB results are also very different, everything
depends on benchmark type. For example, for SP test
smaller size system of nonlinear PDEs had better
Mop/s than for bigger size. However, for lower matri-
ces sizes in LU test results are worse than for bigger
matrices.

The presented approach for virtual clusters cre-
ation from Linux containers was found to be efficient
and its performance was proven comparable to that of
an ordinary physical cluster: not only the use of con-
tainers does not incur processor virtualization over-
heads, but also the network virtualization overheads
can be totally removed if the host’s network name
space is used and the network bandwidth is saved by
automatically transferring only those files that are
needed through network-mounted file system rather

Fig. 5. Average performance of OpenFOAM with different
LXC network types.

120

90

60

16 25 36 6449
No. of cores

T
im

e,
 s

no LXC
none

veth
macvlan

Fig. 6. Difference of OpenFOAM performance on physi-
cal and virtual clusters. Negative numbers show slowdown
of virtual cluster.

0

–10

–5

–20

–15

16 25 36 6449
No. of cores

T
im

e,
 s

none
macvlan
veth

Fig. 4. Breakdown of LXC empty MPI program run.

4
3
2
1
0

1
8

16
24

32
40

48 96
56

64
72

80
88

No. of cores

T
im

e,
 s

mpirun, destroy create

PHYSICS OF PARTICLES AND NUCLEI LETTERS Vol. 14 No. 7 2017

DESKTOP SUPERCOMPUTER: WHAT CAN IT DO? 991

than the whole images. From the point of view of a
system administrator, storing each HPC application
in its own container makes versioning and dependen-
cies control easily manageable and their configura-
tion does not interfere with the configuration of the
host machines and other containers. In general, the
testing above demonstrated sufficient efficiency of
the virtual cluster, and in the future we can move on
to the implementation of the program, described in
the introduction.

8. EXAMPLES OF PROBLEMS SOLVED
WITH THE PROPOSED APPROACH

Herein we only mention some of the important
problems that are solved in this way:

(1) Numerical investigation of the classical trajec-
tory problem.

The quantum approach is constructed on the gen-
erating trajectory tubes which allow taking into
account the influence of classical nonintegrability of
the dynamical quantum system [8]. When the volume
of classical chaos in a phase space is larger than the
quantum cell in the corresponding quantum system,
quantum chaos is generated. Success in numerical
investigation in this case was reached just only owing
to the proposed approach.

(2) Direct numerical simulation in f luid dynamics.
Direct numerical experiments in continuum

mechanics using digital discrete computers are based
on a limited set of numeric objects which interpolate
parameters of the state of the physical fields in time
[12]. The proposed approach makes it possible to
exclude from consideration the mathematical models
of f luid mechanics in the form of differential equations
in partial derivatives. Computational experiment is
carried out on the basis of fundamental conservation

laws. The dualism of corpuscular and continual mod-
els of continuous medium allowed to present comput-
ing procedure in the form of three serial stages com-
bining approaches of Euler and Lagrange. Such divi-
sion is aimed at providing efficient computing
procedure especially in the conditions of the multipro-
cessor computer environment [7]. As the basis of com-
putational efficiency the use of explicit numerical
schemes can be considered.

(3) Virtual testbed.
Under the virtual testbed we mean hardware-soft-

ware system that provides comprehensive modeling of
dynamic objects interacting with each other and with
environment. Since the use of a universal model in this
case is not possible, harmonization of certain models
of objects and their mapping to distributed computer
architecture is necessary [6, 17].

(4) Physical and chemical processes in PECVD
reactors.

A realization of virtual testbed principles is demon-
strated in such an important application as the Virtual
Reactor for Plasma Enhanced Chemical Vapor Depo-
sition (PECVD) [19].

(5) Modeling political behavior psychology.
Traditionally social science research methods are

focused mainly on the use of statistical methods and
game theory. The use of such instruments is due
mainly to complex character and difficult formaliza-
tion of the problems. In [9] an attempt to extend the
described approach to the solution of this problem is
carried out.

9. SUMMARY
The analysis showed that the new computing

resources can solve complex nonlinear problems.
However, this requires great efforts. The most difficult

Fig. 7. Performance of different tests from NAS Parallel Benchmarks suite on different configurations.

2000

600

1000

800

400

200

0

1200

1800

1600

1400

BT FTCG EP LU MG SP

W
A
B

M
op

/s
, h

ig
he

r i
s b

et
te

r

992

PHYSICS OF PARTICLES AND NUCLEI LETTERS Vol. 14 No. 7 2017

BOGDANOV et al.

part is to prepare a virtual distributed computing sys-
tem. Unfortunately, this problem cannot be formal-
ized. It requires highly skilled both system program-
mers and users. With regard to the development of
algorithms, with the appearance of virtual clusters,
this problem is likely to be simpler in view of the math-
ematical formulation of problems. It seems to us that
we should expect significant progress in both these
areas.

ACKNOWLEDGMENTS
The research was carried out using computational

resources of Resource Centre “Computational Centre
of Saint Petersburg State University” (T-EDGE96
HPC-0011828-001) and supported by Russian Foun-
dation for Basic Research (projects nos. 16-07-01111,
16-07-00886, 16-07-01113) and St. Petersburg State
University (project no. 0.37.155.2014).

REFERENCES
1. V. I. Arnold, Ordinary Differential Equations (Springer,

Berlin, Heidelberg, 1992).
2. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” ACM SIGOPS Operat.
Syst. Rev. 37, 164–177 (2003).

3. A. V. Bogdanov, “Calculation of the quantum-
mechanical inelastic scattering amplitude via solution
of the classical dynamical problems,” Sov. Phys. Tech.
Phys. 31, 833–835 (1986).

4. A. Bogdanov, “Private cloud vs personal supercom-
puter,” in Proceedings of the 5th International Conference
on Distributed Computing and Grid Technologies in Sci-
ence and Education (JINR, Dubna, 2012), pp. 57–59.

5. A. V. Bogdanov, A. B. Degtyarev, I. G. Gankevich,
V. Yu. Gayduchok, and V. I. Zolotarev, “Virtual work-
space as a basis of supercomputer center,” in Proceed-
ings of the 5th International Conference on Distributed
Computing and Grid Technologies in Science and Educa-
tion (JINR, Dubna, 2012), pp. 60–66.

6. A. Bogdanov, A. Degtyarev, and Yu. Nechaev, “Parallel
algorithms for virtual testbed,” in Proceedings of the
5th International Conference on Computer Science and
Information Technologies CSIT'2005, Yerevan, Armenia,
2005, pp. 393–398.

7. A. V. Bogdanov, A. B. Degtyarev, and V. N. Khra-
mushin, “High performance computations on hybrid
systems: will “grand challenges” be solved?,” Comput.
Res. Model. 7, 429–438 (2015).

8. A. Bogdanov, A. Gevorkyan, and G. Nyman, “Regular
and chaotic quantum dynamics in atom-diatom reac-
tive collisions,” Phys. At. Nucl. 71, 876–883 (2008).

9. A. Bogdanov et al., “Mathematical model of psychol-
ogy-political classification of political parties,” in Pro-
ceedings of the International Conference on Mathematical

Modeling and Computational Physics, Stará Lesná, Slo-
vakia, 2015.

10. E. A. Brewer, “A certain freedom: thoughts on the CAP the-
orem,” in Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing
(ACM, New York, 2010), No. 1, pp. 335–336.

11. A. Degtyarev, “High performance computer technolo-
gies in shipbuilding,” in Optimistic. Optimization in
Marine Design, Ed. by L. Birk and S. Harries (Mensch &
Buch, Berlin, 2003), pp. 245–258.

12. A. B. Degtyarev and V. N. Khramushin, “Design and
construction of computer experiment in hydrodynam-
ics using explicit numerical schemes and tensor mathe-
matics algorithms,” Mat. Model. 26 (11), 4–17 (2014).

13. I. Gankevich, Yu. Tipikin, A. Degtyarev, and V. Kork-
hov, “Novel approaches for distributing workload on
commodity computer systems,” Lect. Notes Comput.
Sci. 9158, 259–271 (2015).

14. I. Gankevich, S. Balyan, S. Abrahamyan, and V. Korkhov,
“Applications of on-demand virtual clusters to high
performance computing,” Comput. Res. Model. 7,
504–509 (2015).

15. I. Gankevich, V. Gaiduchok, D. Gushchanskiy, Y. Tipikin,
V. Korkhov, A. Degtyarev, A. Bogdanov, anbd
V. Zolotarev, “Virtual private supercomputer: design
and evaluation,” in Proceedings of the 9th International
Conference on Computer Science and Information Tech-
nologies CSIT (2013). doi 10.1109/CSITech-
nol.2013.671035810.1109/CSITechnol.2013.6710358

16. I. Gankevich, V. Korkhov, S. Balyan, V. Gaiduchok,
D. Gushchanskiy, Y. Tipikin, A. Degtyarev, and
A. Bogdanov, “Constructing virtual private supercom-
puter using virtualization and cloud technologies,” in
Proceedings of the International Conference on Computa-
tional Science and Its Applications ICCSA’2014, Lect.
Notes Comput. Sci. 8584, 341–354 (2014).

17. I. Gankevich and A. Degtyarev, “Model of distributed
computations in virtual testbed,” in Proceedings of the
9th International Conference on Computer Science and
Information Tecnologies CSIT'2013, Yerevan, Armenia,
2013, pp. 240–244.

18. V. Korkhov, S. Kobyshev, and A. Krosheninnikov,
“Flexible configuration of application-centric virtual-
ized computing infrastructure,” in Proceedings of the
International Conference on Computational Science and
Its Applications ICCSA’2015, Lect. Notes Comput. Sci.
9158, 342–353 (2015).

19. V. Korkhov, V. Krzhizhanovskaya, and P. Sloot,
“A grid based virtual reactor: parallel performance and
adaptive load balancing,” J. Parallel Distrib. Comput.
68, 596–608 (2008).

20. I. Shoshmina and A. Bogdanov, “Using GRID tech-
nologies for computations,” Vestn. SPb. Univ., Fiz.
Khim., No. 3, 130–137 (2007).

21. M. Yu. Sumetsky and M. L. Fel’shtyn, Resonant Tun-
neling of Electrons through the Two- and Three-Dimen-
sional Nanostructures (NTO Akad. Nauk SSSR, Lenin-
grad, 1990).

