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Abstract⎯We study the integrable model with minimally and non-minimally coupled scalar fields and the
correspondence of their general solutions. Using the model with a minimally coupled scalar field and a the
constant potential as an example we demonstrate the difference between the general solutions of the corre-
sponding models in the Jordan and the Einstein frames.
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1. COSMOLOGICAL MODELS 
WITH NON-MINIMAL COUPLING

The observable evolution of the Universe [1] can be
described by the spatially f lat Friedmann–Lemaître–
Robertson–Walker (FLRW) background and cosmo-
logical perturbations. By this reason cosmological
models with scalar fields are very useful and play a
central role in the description of the Universe. The
models with the Ricci scalar multiplied by a function
of the scalar field are being intensively studied.
Appearance of such a term is quite natural because
quantum corrections to the effective action with min-
imal coupling include it [2, 3]. Note that the inflation-
ary models with non-minimally coupled scalar field
attract a lot of attention [4–6], because they not only
do not contradict to the recent observation data [1],
but also connect cosmology and particle physics.

We consider the model described by the following
action:

(1)

where  and  are differentiable functions of
the scalar field .

In a spatially f lat FLRW space-time with
, where 

is the scale factor and  is the lapse function, the
action (1) leads to the following equations [7, 8]:

(2)

(3)

(4)

where a “dot” means a derivative with respect to time
and a “prime” means a derivative with respect to .
The function  is the time derivative of the logarithm
of the scale factor: . If we fix the lapse function

, then  is the cosmic time  and  is the Hubble
parameter .

The evolution of the Universe depends on the form
of the functions  and . For generic functions  and

 the system of equations (2)–(4) is not integrable.
The number of integrable cosmological models based
on scalar fields is rather limited [9]. Integrable cosmo-
logical models with non-minimally coupled scalar1 The article is published in the original.
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fields correspond to integrable models with minimal
coupling. This correspondence gives a useful way to
get new integrable cosmological models [8, 10].
Sometimes it is easier to prove the integrability of the
model with non-minimal coupling than that of the
corresponding model in the Einstein frame [12–14].
The goal of this paper is to demonstrate that the gen-
eral solutions of the corresponding models with mini-
mal and non-minimal coupling can be different. The
reasons of this difference can be the singularities or
zeroes of the functions  and , as well as zeroes
of .

Let us perform the conformal transformation
, where the metric in the Ein-

stein frame is marked with a tilde, and  is the
Planck mass.

After this transformation, we get a model for a min-
imally coupled scalar field, described by the following
action

(5)

Note that action (5) has a singular point at 
In this paper we consider

(6)

i.e. we consider the case when the coupling is confor-
mal and the standard Einstein–Hilbert term is also
present. Models with the coupling function  are
actively studied [8, 10–13, 15, 16].

In order to get the action with the standard kinetic
term of the scalar field from (5) we introduce a new
scalar field  such that

(7)

Equation (7) has trivial solutions  and
the following nontrivial solution:

(8)

Note that functions  and  should be real, whereas a
constant  can be complex. In particular, at

, we get a real solution
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if  is a real constant. We obtain that any real solution
 in the Einstein frame corresponds to two real

solutions  in the Jordan frame (hereafter we
consider both  and  as real numbers). Also,

 for any  and  for any . If ,
then  and, hence, . We come to con-
clusion that there is no solution  that crosses
the value of .

On the other hand, when we consider the proper
dynamics of the field  there is nothing that prevents
it from crossing the value , because  is
not a singular point of this system (2)–(4). Indeed, we
represent this system with  and  as a
dynamical system [17] and obtain [15]

(10)

The equations (10) can have a solution such that
 at some moment and  at another

moment and that can not be found on using the Jor-
dan–Einstein frame correspondence. To clarify this
statement we consider the well-known cosmologi-
calmodel with a minimally coupled scalar field and a
positive cosmological constant. Note that models
with negative or zero cosmological constant that have
been considered in detail in [15] confirm this state-
ment as well.

2. THE MODEL WITH MINIMAL COUPLING 
AND A POSITIVE COSMOLOGICAL TERM
Let us consider the cosmological model with a

minimally coupled scalar field and a constant poten-
tial. The corresponding equations of motion are
Eqs. (2)–(4) with  and . At 
we obtain the following system (  is a cosmic
time):
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The choice of the solution is fixed by Eq. (11). If φ is
real, then only the solution  is possible. From
Eq. (13) for  we get

(14)

where  and  are integration constants. Using rela-
tions (8) and (9), we obtain  as a function of the cos-
mic time in the Einstein frame :

(15)

At first glance we have found the general solution
in the Jordan frame, because  is the general solu-
tion in the Einstein frame. However,  at
all , therefore, we have solutions that correspond to
positive  only. Analogously the solution  cor-
responds to  for all . At the same
time there exist exact solutions for which 
changes sign.

The corresponding model with  and
 is described by equations

(16)

obtained from Eq. (2) with  and system (10). In
the case of a positive  system (16) has the following
particular solution in terms of elementary functions:

(17)

where  is the cosmic time in the Jordan frame, the
parameter  is arbitrary and the parameter  is
defined by the following relation  It is
evident that the function  changes its sign at

Note that the system (16) is integrable. The general
solution for this model with an arbitrary  has been
found in quadratures in [15], where solutions at which
the function  changes its sign have been used to
describe the crossing of singularities in the Einstein
frame.

3. CONCLUSIONS
In this paper we concentrate on the problems of the

construction of general solutions of the cosmological
models. We have shown that the knowledge of the gen-
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eral solution in the Einstein frame does not guarantee
the knowledge of the general solution for the corre-
sponding model in the Jordan frame. At the same time
this knowledge help to find the general solutions solv-
ing equations in the Jordan frame [8]. The similar
problem arises even if we restrict ourselves to consid-
ering models with minimal coupling only. Indeed the
standard way to get the general solution includes the
choice of some suitable function  that allows to
integrate equations. So, one obtains the general solu-
tion in parametric time, that can be different from the
general solution in the cosmic time.
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