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Abstract—We study the integrable model with minimally and non-minimally coupled scalar fields and the
correspondence of their general solutions. Using the model with a minimally coupled scalar field and a the
constant potential as an example we demonstrate the difference between the general solutions of the corre-
sponding models in the Jordan and the Einstein frames.
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1. COSMOLOGICAL MODELS
WITH NON-MINIMAL COUPLING

The observable evolution of the Universe [1] can be
described by the spatially flat Friedmann—Lemaitre—
Robertson—Walker (FLRW) background and cosmo-
logical perturbations. By this reason cosmological
models with scalar fields are very useful and play a
central role in the description of the Universe. The
models with the Ricci scalar multiplied by a function
of the scalar field are being intensively studied.
Appearance of such a term is quite natural because
quantum corrections to the effective action with min-
imal coupling include it [2, 3]. Note that the inflation-
ary models with non-minimally coupled scalar field
attract a lot of attention [4—6], because they not only
do not contradict to the recent observation data [1],
but also connect cosmology and particle physics.

We consider the model described by the following
action:

S = j d*xJ—g [U(G)R - % g"6,0, - V(G)}, (1)

where U(c) and V(o) are differentiable functions of
the scalar field G.

! The article is published in the original.

In a spatially flat FLRW space-time with
ds® = N> (Vdt’ - a’(v)[dx; + dx; + dx; |, where a(1)

is the scale factor and N (1) is the lapse function, the
action (1) leads to the following equations [7, 8]:

6UR> + 6U'Gh = %62 +N, )

AUh + 6UR* + 4U'6h — aUnY. + 205

P N 3)

+E WY =—25"+NW,
N 2

6+(3h—ﬂ)c—6U'[h+2h2 —hﬁ}+N2V' — 0. (4)
N N

where a “dot” means a derivative with respect to time
and a “prime” means a derivative with respect to G.
The function # is the time derivative of the logarithm
of'the scale factor: 4 = a'/ a. If we fix the lapse function
N =1, then 7 is the cosmic time 7 and 4 is the Hubble
parameter H .

The evolution of the Universe depends on the form
of'the functions U and V. For generic functions U and
V' the system of equations (2)—(4) is not integrable.
The number of integrable cosmological models based
on scalar fields is rather limited [9]. Integrable cosmo-
logical models with non-minimally coupled scalar
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fields correspond to integrable models with minimal
coupling. This correspondence gives a useful way to
get new integrable cosmological models [8, 10].
Sometimes it is easier to prove the integrability of the
model with non-minimal coupling than that of the
corresponding model in the Einstein frame [12—14].
The goal of this paper is to demonstrate that the gen-
eral solutions of the corresponding models with mini-
mal and non-minimal coupling can be different. The
reasons of this difference can be the singularities or
zeroes of the functions N (1) and a(t), as well as zeroes
of U(o(7)).

Let us perform the conformal transformation
g = 16nM ;]2U (0)g,y> Where the metric in the Ein-

stein frame is marked with a tilde, and My, is the
Planck mass.

After this transformation, we get a model for a min-
imally coupled scalar field, described by the following
action

M? M}
Sp = |d*xJ-g| =2 RE) - 2
g I ng ®~mu )
30U LV M;lV
X|14+= o,0, ———|.
[ U}g Y 2s56nU?

Note that action (5) has a singular point at U = 0.
In this paper we consider

2 2
_9 where U, = Mo, (6)
12 16m

i.e. we consider the case when the coupling is confor-
mal and the standard Einstein—Hilbert term is also

present. Models with the coupling function U, are
actively studied [8, 10—13, 15, 16].

In order to get the action with the standard kinetic
term of the scalar field from (5) we introduce a new
scalar field ¢ such that

do _JUunU, +307
do U.

=12—U02:>d_0=1_L62.
120, -c>  do 120,

Equation (7) has trivial solutions 6, = /12U, and
the following nontrivial solution:

_ -
o, =120, tanh(mj. (8)

Note that functions 6, and ¢ should be real, whereas a
constant ¢, can be complex. In particular, at
O = §, + im/2, we get a real solution

_ 0—dy
o, =+12U, coth(mj, )
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UC(G) = UO

(7
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if §, is a real constant. We obtain that any real solution
®(t) in the Einstein frame corresponds to two real
solutions ¢,(¢(t)) in the Jordan frame (hereafter we
consider both ¢, and ¢, as real numbers). Also,
U, >0 for any 6, and U, < 0 for any o,. If |§| — o,
then 6 — ¢, and, hence, U, — 0. We come to con-
clusion that there is no solution o(¢(t)) that crosses
the value of 5.

On the other hand, when we consider the proper
dynamics of the field ¢ there is nothing that prevents
it from crossing the value ¢ = G, because U, =0 is
not a singular point of this system (2)—(4). Indeed, we

represent this system with U =U, and N =1 as a
dynamical system [17] and obtain [15]

(120, - 6*|V" + 40V
120,

. 1 2472 . \2
H=——|200H " +(4HSG-V")O0+ 2(6)"|.
12U0[ ( ) ()}

The equations (10) can have a solution such that
U.>0 at some moment and U, <0 at another
moment and that can not be found on using the Jor-
dan—Einstein frame correspondence. To clarify this
statement we consider the well-known cosmologi-
calmodel with a minimally coupled scalar field and a
positive cosmological constant. Note that models
with negative or zero cosmological constant that have
been considered in detail in [15] confirm this state-
ment as well.

6=-3H6—
(10)

2. THE MODEL WITH MINIMAL COUPLING
AND A POSITIVE COSMOLOGICAL TERM

Let us consider the cosmological model with a
minimally coupled scalar field and a constant poten-
tial. The corresponding equations of motion are
Egs. 2)—(4) with U =U, and V =A>0. At N =1
we obtain the following system (T =7 is a cosmic
time):

6U A’ = %dﬁ + A, (11)

H+30>- A~ (12)
0

d+3HH=0. (13)

To emphasise that we consider the Einstein frame we
denote the scalar field as ¢. A non-constant Hubble

parameter H that satisfies Eq. (12) is either

H ()= —[%0 tanh (—“ OA EJO 7 - fl)}
or H.(f) = %coth (—"62(’\](]06 - fl)].
0 0
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The choice of the solution is fixed by Eq. (11). If ¢ is
real, then only the solution H, is possible. From
Eq. (13) for H = H . (f) we get

_2 Y6A ;7
¢—3 3Uo[ln{coth(4m(f tl)j:|+¢0

where 7, and ¢, are integration constants. Using rela-
tions (8) and (9), we obtain ¢ as a function of the cos-

mic time in the Einstein frame 7 :

0, = 12U, tanh [6(F)], o, = 12U, coth[o()]. (15)

At first glance we have found the general solution
in the Jordan frame, because ¢(7) is the general solu-
tion in the Einstein frame. However, |6,(7)| < 12U, at
all 7, therefore, we have solutions that correspond to
positive U (o) only. Analogously the solution ¢, cor-
responds to U (6) < 0 for all 6,(¢(7)). At the same

time there exist exact solutions for which U (0)
changes sign.

, (14

The corresponding model with U =U, and
V=AU CZ / U 5 is described by equations
6U.H> — o6 H = %62 + Ay,

0 (16)

H+2H = ﬁUc, &=-3H6,

0
obtained from Eq. (2) with N =1 and system (10). In
the case of a positive A system (16) has the following
particular solution in terms of elementary functions:

o) == VU, ,

\/3 6U0e—72UOC2(t—t1) 1
24C,U, (18U 4 4 1)

36er—72U0C2(t—t,) _
where ¢ is the cosmic time in the Jordan frame, the
parameter ¢, is arbitrary and the parameter C, is
defined by the following relation A = 864C,U,. It is
evident that the function U, changes its sign at
Note that the system (16) is integrable. The general

solution for this model with an arbitrary A has been
found in quadratures in [15], where solutions at which
the function U, changes its sign have been used to
describe the crossing of singularities in the Einstein
frame.

A7)

H(r) = -

b

3. CONCLUSIONS

In this paper we concentrate on the problems of the
construction of general solutions of the cosmological
models. We have shown that the knowledge of the gen-
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eral solution in the Einstein frame does not guarantee
the knowledge of the general solution for the corre-
sponding model in the Jordan frame. At the same time
this knowledge help to find the general solutions solv-
ing equations in the Jordan frame [8]. The similar
problem arises even if we restrict ourselves to consid-
ering models with minimal coupling only. Indeed the
standard way to get the general solution includes the
choice of some suitable function N (1) that allows to
integrate equations. So, one obtains the general solu-
tion in parametric time, that can be different from the
general solution in the cosmic time.
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