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Abstract⎯In this short review we describe the integrability properties of the Calogero-type perturbations of
one- and two-center Coulomb problems and of the Stark–Coulomb problem. We present the explicit expres-
sions of their constants of motion and show that these systems admit partial separation of variables.
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INTRODUCTION
The Coulomb problem is maximally superintegra-

ble due to the conservation of the Runge–Lenz vector.
The Hamiltonian admits separation of variables in
several coordinate systems. Any such coordinate sys-
tem possesses its own integrable perturbations. Among
them there are the Coulomb problem in constant elec-
tric field (Coulomb–Stark problem) and the two-cen-
ter Coulomb problem. They admit a separation of
variables, respectively, in parabolic and elliptic coor-
dinates. Note that both systems are not exactly solv-
able. In the Coulomb-Stark problem, one can get ana-
lytically only the perturbative spectrum, while in the
two-center Coulomb system, the energy spectrum can
be constructed only numerically, except for some spe-
cial cases [1]. Nevertheless, the separation of variables
is crucial in their study.

The well-known rational Calogero model [2],
which describes one-dimensional particles, interact-
ing with inverse-square potential,

(1)

is another example of maximally superintegrable sys-
tem [3]. It possesses higher-order (in momenta) inte-
grals of motion, which had been constructed by the
Lax pair [4]. The inverse-square potential in one
dimension possesses various integrable generaliza-
tions [see Refs. [5, 6] for the review], which have many
applications in physics and mathematics.

The mixture of the Coulomb and Calogero poten-
tials gives rise to a more general integrable -dimen-
sional system [7]. Recently we have shown together
with Olaf Lechtenfeld that the Calogero–Coulomb
system is also superintegrable [8]. This property can be

understood in the action-angle language. An explicit
form of the complete set of constants of motion can be
derived by taking proper deformations of the corre-
sponding integrals of the underlying Coulomb system,
then forming the symmetric polynomials on them
[8, 9]. This method differs from the standard con-
struction [4], so that the deformations of the Liouville
integrals do not commute any more. Nevertheless, the
functional independence of the constricted integrals
of motion is preserved.

In this review based on Ref. [9, 10], we consider in
this context the -dimensional Coulomb, Coulomb–
Stark and two-center Coulomb problems with the
additional Calogero potential (we will refer them as
Calogero–Coulomb, Calogero–Coulomb–Stark and
two-center Calogero–Coulomb problems). These sys-
tems have a highlighted direction, along which the full
rotational symmetry of the initial one-center Cou-
lomb problem is broken down to the  sym-
metry. It is defined, respectively, by the external filed
direction and by the line connecting two Coulomb
charges. We show that under the proper choice of this
highlighted direction, both systems still remain inte-
grable and admit partial separation of variables. In
fact, the Schrödinger equation decouples into three
parts, only one of which depends on the inverse-
square interaction term. The latter can be treated as a
deformation of the Schrödinger equation for the

 angular momentum, usually referred as an
angular Calogero Hamiltonian [11–15].

Calogero–Coulomb problem. The Calogero–Cou-
lomb problem is a mixture of the -particle rational
Calogero model (1) and of the -dimensional Cou-
lomb system [7]:

(2)
1 The article is published in the original.
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It inherits most of the properties of the original Cou-
lomb system and possesses hidden symmetries given
by an analog of Runge–Lenz vector [8, 9]. It is conve-
nient to describe this system by means of the Dunkl
operators which make transparent the analogy with
the initial Coulomb problem. Let us consider instead
the extended Hamiltonian in this regard,

(3)

The modified momentum is expressed in terms of the
Dunkl operators by

(4)

The operator  permutes the -th and -th coordi-
nates. On the symmetric wavefunctions the general-
ized Hamiltonian  reduces to the Calogero–
Coulomb Hamiltonian (2). The Dunkl operators
commute mutually like ordinary partial derivatives.
However, their commutations with coordinates are
nontrivial deformations of the Heisenberg algebra
relations [16],

(5)

The operators  for  are just rescaled permuta-
tions:  and the  are defined by through
the relation 

Let us define the deformed angular momentum
operator via the Dunkl momentum [11, 17]:

(6)

It preserves generalized Calogero–Coulomb Hamil-
tonian [8] and satisfies the deformed angular momen-
tum commutation relations [11].

The deformed Runge–Lenz vector preserving gen-
eralized Calogero–Coulomb Hamiltonian reads [9]

(7)

It contains the permutation-group invariant element
which vanishes in the absence of the Calogero term

(8)

The Calogero–Coulomb problem can be obtained by
the restriction of the extended Hamiltonian (3) to the
symmetric wavefunctions. Therefore, its constants of
motion can be constructed by taking the symmetric
polynomials on the components of the Dunkl angular
momentum and Runge-Lenz vector [8, 9]:

(9)
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The expressions above demonstrate that the Calogero-
Coulomb problem is a superintegrable system, like the
pure Calogero [3] and Coulomb models. Note that the
the square of Dunkl angular momentum is related to the
the angular part  of the Calogero Hamiltonian [11]:

(10)
In two dimension the symmetries of the Calogero–
Coulomb system, based on the dihedral group 
have been studied also in Ref. [18].

Coulomb–Calogero–Stark problem. Consider the
-dimensional Coulomb problem in constant electric

field  in the presence of the Calogero interaction:

(11)

where  is the normalized center-of-mass coordinate
(see Eq. (14) below). The external field is aligned in
the direction , which ensures the permutation
invariance of the Hamiltonian. In the absence of the
external field, this model is reduced to the Calogero–
Coulomb model, considered above.

The generalized Hamiltonian is defined in terms of
the Dunkl momentum (4) as follows:

(12)

The entire Dunk angular momentum tensor (6) is not
an integral of motion any more. Instead, its compo-
nents, which are orthogonal to the external field, are
preserved,

(13)

Alternatively, one can express them in terms of the
Jacobi coordinates, which separate the center-of-mass
from the relative motion. They are defined by the
orthogonal map [13, 19]

(14)

where  The first coordinate describes
the center of mass, while the others, marked by tilde,
characterize the relative motion.

Denote now by  the components of the
deformed relative angular momentum, rotated by the
Jacobi transformation. The algebra generated by  in
fact, coincides with the  which are responsible for
the relative motion ( ). In the absence
of Calogero interaction, they form the  sub-
algebra, which describes the rotations in the hyper-
space, orthogonal to the center-of-mass direction.
Apart from the deformed relative angular momen-
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tums, the modified component of the Runge–Lenz
vector (7) along the field direction is preserved as well.
It reads

(15)

This invariant commutes with the deformed relative
angular momentum. In the  limit, one can
extract from these symmetry generators the standard
Liouville integrals of the Coulomb–Stark system. The

 integrals can be chosen to be the quadratic
Casimir elements of the naturally embedded algebras

. They are described in the
relative angular coordinates and momenta. The last
two integrals are given by the Hamiltonian and the
modified component of the Runge–Lenz vector,
which had been constructed for  in Ref. [20].
Out of the  point, we deal with the deformed
quantities, and the Liouville property can not be
extended straightforwardly. Nevertheless, in the pres-
ence of a constant uniform electric field, the general-
ized Calogero–Coulomb model (12) still remains an
integrable system.

The integrals of the pure Calogero–Coulomb sys-
tem (11) obtained by the restriction to the symmetric
wavefunctions, must be symmetric too. Since the lon-
gitude component of the Runge–Lenz vector (15)
obeys this condition, it remains as a correct integral for
this system, . We should take symmetric
expressions of the kinematical constants of motion
too, as in the absence of the electric field [9]. For this
purpose it is more suitable to use the angular momen-
tum in Jacobi coordinates:

(16)

The first member of this family is the square of the rel-
ative Dunkl angular momentum. It is related to the
angular part of the Calogero model with reduced cen-
ter of mass , which we call the relative angular Calog-
ero Hamiltonian, by the same formula as Eq. (10)
above. So, we have proved the integrability of the
Calogero–Coulomb–Stark system. It is well known
that the Coulomb–Stark system admits separation of
variables in parabolic coordinates. It appears that the
Calogero–Coulomb–Stark system admits complete
separation of variables in parabolic coordinates for

 and partial separation for  [10].
In the Jacobi coordinates (14), the last system

acquires the following form:

(17)
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where the last term is the Calogero Hamiltonian (1)
with reduced center of mass. We pass to the parabolic
coordinates , where  are the relative angular
variables, and

(18)

In new coordinates the Hamiltonian (17) is expressed
as follows:

(19)

where we have shorten the kinetic term using the
notation

(20)

Further we proceed by extending straightforwardly the
steps, applied for the usual Coulomb system in exter-
nal field in Ref. [21]. Employing the following ansatz
to the total wavefunction

(21)

we decouple Schrödinger equation  into
three parts. The two of them depend, respectively, on

 and ,

(22a)

(22b)

where . The last equation describes the
spectrum and eigenstates of the relative angular
Calogero model [12]:

(22c)

In particular, the spectrum is determined by the numbers

(23)

For integer values of the coupling , the angular
energy spectrum is that of a free particle with angular
momentum  on the -dimensional sphere, but
has a significantly lower degeneracy due to the restric-
tion to the symmetric wavefunctions [12, 14].

The longitudinal component of the Runge–Lenz
vector (15) separates the equations (22a) and (22b):

. The second invariant, given by the
relative angular Hamiltonian , is common in both
cases and separates the relative angular degrees of free-
dom. As in the usual Coulomb problem [22], the elec-
tric field completely removes the degeneracy in the
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orbital momentum, but preserves the degeneracy with
respect to .

Two-Center Calogero–Coulomb system. Consider
now the integrable two-center Coulomb system in the
presence of the inverse-square Calogero potential. In
order to construct the Hamiltonian of this system, we
should replace, as in previous sections, the momenta
operators by the Dunkl momenta, and then restrict the
Hamiltonian to the symmetric wavefunction. In order
to assure the permutation symmetry, we align the axis,
connecting two Coulomb charges, along the center-
of-mass coordinate. In the Jacobi coordinates (14),
the distances to the charges are given by

(24)

The generalized two-center Calogero–Coulomb
Hamiltonian is

(25)

On the symmetric wavefunctions, it produces the two-
center Calogero–Coulomb system,

(26)

Like the Calogero–Coulomb–Stark Hamiltonian, it
possesses the symmetry given by the deformed angular
momentum generators perpendicular to the pre-
defined direction (13).

The modified Runge–Lenz integral of the 
Hamiltonian have been constructed in Refs. [23, 24].
The construction can be extended to the case of non-
zero coupling values by [10]

(27)

where  is the Dunkl angular momentum square,
defined in Eqs. (9).

Now, let us show that in complete analogy with the
previous case, the two center Calogero–Coulomb
system (26) admits complete separation of variables
in the elliptic coordinates for  and the partial
separation for . The map from the Jacobi vari-
ables  to the elliptic coordinates  looks as
follows [25]:

(28)

where  is the distance from the -th Coulomb
charge (24).
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The two-center Calogero–Coulomb Hamilto-
nian (26) in elliptic coordinates reads

(29)

where the operator  from the kinetic energy part
acquires the following form:

(30)

Then, choosing the wavefunction  =
, we can separate the variables in the

Schrödinger equation into the three parts. The first
two equation are

(31a)

(31b)

The third equation is inherited from the Stark
case (22c). It describes the energy eigenstates of the
relative angular Calogero Hamiltonian and its spec-
trum, depending on the composite quantum number 
(23). In the absence of the Calogero term, it deter-
mines the spectrum and energy states of a free particle
system on -dimensional sphere. Obviously,
the partial states  in the first two equations depend
on the energy level  and the . The parameter  in
the first two equations separates the variables  and .
It coincides with the eigenvalue of the slightly rede-
fined Runge–Lenz invariant for the two center Calog-
ero–Coulomb system (27) with the Dunkl angular
momentum square replaced by the doubled angular
Calogero Hamiltonian,
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