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Abstract—We consider the spherical reduction of the rational Calogero model (of type 4,,_;, without the cen-
ter of mass) as a maximally superintegrable quantum system. It describes a particle on the (n — 2)-sphere in a
very special potential. A detailed analysis is provided of the simplest non-separable case, n = 4, whose poten-
tial blows up at the edges of a spherical tetrahexahedron, tesselating the two-sphere into 24 identical right
isosceles spherical triangles in which the particle is trapped. We construct a complete set of independent con-
served charges and of Hamiltonian intertwiners and elucidate their algebra. The key structure is the ring of
polynomials in Dunkl-deformed angular momenta, in particular the subspaces invariant and antiinvariant

under all Weyl reflections, respectively.

DOI: 10.1134/S1547477117020066

1. SOME HISTORY

The Calogero model has a 45-year history, starting
in 1971 with the original Calogero paper [1]. Ten years

later Olshanetsky and Perelemov generalized the 4,,_,
model to arbitrary finite-dimensional Lie algebras and
demonstrated their classical [2] and quantum [3] inte-
grability. In 1983, the superintegrability of the Calog-
ero-Moser system was established by Wojciechowski
[4]. Starting with their seminal 1990 paper [5] on com-
mutative rings of partial differential operators and Lie
algebras, Veselov and Chalykh initiated a series of
works on intertwiners (shift operators) and the exact
energy spectrum for integer couplings (multiplicities).
In parallel, employing the differential-difference
operators associated to reflection groups and intro-
duced by Dunkl [6], Heckman gave an elementary
construction for commuting charges and intertwiners
[7]. The first investigation of the spherical reduction of
the rational Calogero model (here called ‘angular
Calogero model’) goes back to M. Feigin in 2003 [8].

The A, and A, cases were analyzed classically in 2008
by Hakobyan, Nersessian and Yeghikyan [9], and five
years later the quantum energy spectra and eigenstates
were derived for all angular Calogero models by
M. Feigin, Lechtenfeld and Polychronakos [10]. More
recently, M. Feigin and Hakobyan presented a deeper
analysis of the algebra of Dunkl angular momentum
operators, and just now the 4, and A4; angular models
have been reconsidered on the quantum level by the
authors [12]. This talk reviews their results.

! The article is published in the original.

2. THE ANGULAR (RELATIVE)
CALOGERO MODEL

In the first half of the talk, let us introduce the

spherical reduction of rational A4, ; Calogero model
and present some of its salient features. In an n-parti-

cle quantum phase space with particle coordinates x"
and momenta p,, where W =12,..,n, subject to

[x", p,] = i8}, the rational Calogero Hamiltonian
(after separating the center of mass) reads

n 1 _1
H =Z{Zi(1)p—pv)z+ﬁ}. (1)
n<v

The strength of the inverse-square two-body potential is
parametrized by a real coupling constant g (which could

be taken > ‘l‘). In the ‘relative’ 2(n — 1)-dimensional phase

space, a radial coordinate and momentum are defined via
1 2 2
= Z M =x""=r
n
pu<v

1 2 2,1 2, (n=2)(n—-4)
and—z(p -p) =p.+—=L + 20
pe e e 4r

It is convenient to switch to # — 1 ‘relative’ coordinates

()

yi and momenta p,, withi =1,2,...,n -1,

n—1
=300 p=p
3)
o i j 2 2
L, =-i(y'p; = y'p), L' ==Y I

i<j
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In terms of polar coordinates (r,6) on R"™, the Ham-
iltonian takes the form

(n -2) (n 4)

H = HQ
2 8r? r 4)
with Hg = %Lz +U®),
where the angular potential is
U(e) » z g(g - 1)
= 5)
—, zg(g—l) g(g—l)zcosz 0,.

oeR .,

Here, we introduced the A4,_, positive root system R ,

and the angle 6, between the point 6 e S"* and the
root .. H, is the angular (relative) Calogero Hamilto-
nian, our object of interest.

In the position representation, we pass to differen-
tial operators,

Di |_)_lal :>pr lﬁ_l(ar—l—nz_2)5 (6)

r

so our Hamilton operators become
H —l(ai + ”—_28,) + %HQ
2 r r

af 1 ~D(n-4)), 1
e G =LA

1 i I N2, W2 gg—-1
B> ==> (y'd; —y'd) +r e
22 ! a§+<a-y>2

n=2

with S=r 2.

(7)

The spectrum and the eigenfunctions of H are known,

n3

and W, (r.0) =7 2 J 49, 2Er)v, @),

where we took advantage of the conformal invariance
to separate in polar coordinates. The angular wave

function vq(é) is an eigenfunction of the angular
Hamiltonian, whose spectrum is also in the literature,

Hqov, =¢g,v, with g, =%q(q+n—3)

and g zén(n—l)g+€ 9)
where € =3¢, +4€,+...+nl , e N,.

The degeneracy of energy level €, is given by

deg,(€,) = p,({) — p,(£ - 1)

10
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with the restricted partitions p,({) given by the simple
generating function

PO = p, 0" =TJa-1""
€=0 m=1

Relevant for this talk are the cases of » = 3 and 4,
0 for €=12mod3
deg,(€) =

1

1 for € =0mod3,
dea.(6) = {({J_’_ 0 for £=1,25modl12
84 12 1 for € =elsemodl2 ’

All the interesting nontrivial structure is hidden in the
angular eigenfunctions:

(12)

v,(0) = v (6)
_ i o (13)
- [HG ({QD,})“JAV e,
u=3 '

which employs the Vandermonde A and the (mutually
commuting) Dunkl operators %, as arguments in the

uth Newton sum 6,(y) = Zi(yi)”,

A= Hoc-y
=0, —gZ—sw

where s, denotes the reflectlon on the hyperplane
orthogonal to the root o.. These wave functions con-

(14)
and 9, =

tain a factor of A® and are directly related to Dunkl-
deformed Weyl-symmetric harmonic polynomials,

(15)

The 9,, y' and s, form a rational Cherednik alge-
bra. The restriction ‘res’ of its elements to Weyl-invari-
ant functions yields important differential operators,
in particular our Hamiltonians. To make this explicit,
we ‘Dunkl-deform’ not only the linear momenta,

d; = 9, but also the angular momenta,

vO®) = rAhY with HARE) =

= ()9, -y'0) = £, =-('D,; - y'D,), (16)
and define the ‘pre-Hamiltonians’
1 2
—1%g?
ZZ
(17)

and #,, = — ZSB +- gz SolgZ oS + 1 —13),

l<j

whose Weyl—symmetric restriction produce
= res(7€)

and H, =res(H ) = (18)

—res(?i ) +e,(£ =0).
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The Cherednik subalgebra generated by the ENP and
the Weyl reflections is given by the relations

[£ 5, e (19)
= §Bz€y_/k - $iky/€ g_/eyik + gjkyib
L +L L+ LuE (20)
=L L+ L L 0+ LS 0
[SPU,iﬁke]—o (5L =0, an
yt.'/‘°(£1 §£jk50w
—gs;; for i#j
with 'y =914+¢>" s, for i=j- (22
k(i)

Itis a ‘Dunkl deformation’ of so(n — 1), with H, being
the Casimir invariant

A hallmark of Calogero models is their isospectral-
ity, which is characterized by the existence of inter-
twining (or shift) operators relating the energy spectra
at couplings g and g + 1. This concept is well estab-
lished for the full rational model, but is also works in
the angular submodel. There, angular intertwiners are

differential operators M in § of some order s, con-
structed with the following recipe,
M, =res(AL )
with Al ; = Weyl antiinvariant (23)

in {&‘3 } of degree s.

Since [&£;,#] =0 and M has no r dependence, it
follows that
[J‘/L %Q] =0 M(g)H(g) H(g+l)M(g)
and MEvO-vEh (24)

M s(fg ) intertwines in the opposite

direction, i.e. MTOvE? ~ V}ﬁ)”(n n/2- 1t follows that
for integer g we can obtain the angular eigenfunctions
more directly by successively applying intertwiners to
the free eigenfunctions, say at g =1,

(&) (&-Dpre-2) 1)

o~ Ms,g Msf M Ve+(g Dn(n—1)/2* (25)
An important issue is the ex1stence of conserved
charges beyond the Hamiltonian H . Obviously,

MM, Hyl=0=[MM Hgl, but this need not
provide new quantities. However, any Weyl-invariant
polynomial 6 ,(<£ ;) of some degree ¢ gives rise to a
conserved charge,

6 ,(<£ ) Weyl invariant

= C, = res(¢,) commutes with H,.

The adjoint ]1/15(&')T =

(26)

We already know of C, =1 and C, = —res(¥”) but
expect 2n — 5 algebraically independent constants of

motion (beyond C,) in a superintegrable theory. Other
than the Liouville charges in the full Calogero model,
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they will generically mix under the intertwining
action,

MIC = YT (OCH "M 27)

st

with some coefficient functions Ff,',"(g).

3. WARMUP: THE HEXAGONAL
OR POSCHL-TELLER MODEL

Let us illustrate the structures just mentioned on the

first nontrivial example, which at » = 3 is the 4, model.
Its spherical reduction (to the unit circle) is known as the
Poschl—Teller model, but we call it ‘hexagonal’ because

the potential is singular at angles ¢ = (2k + 1)Tc/ 6. The
relation between the 3 particle coordinates x" and the

2 Jacobi relative coordinates y* orthogonal to the center of
mass X is

x1=X+%yl+%y2,
1 1 1
d =0, +—=0 1, (28)
M AN
Pox-L 1+1 82—18 ~Ly . +1La .,
* N AR AL Lh i LA 2P
3:X_l 2, aa 18 laz
X \/gy X \/8 y

Performing the polar decomposmon and introducing
a complex coordinate,

y' = rcos¢ and y: = rsind

. (29)
Swi=y +iy’ =re,
the angular Hamiltonian takes the form
Q= %(Waw - Waw)2
.3 (30)
+ g(g - 1)% since
w +w)
U) = slg=1 Z cos™ (q) + k2_n)
2 k=012 3 1)
18(ww)

:—g(g—l)COS 30) = g(g - 1)
(w

Its spectrum depends on a single quantum number
€ =30, with€,;eN,,

32"
+w)

1 2
€, ==
1 2q (32)

with ¢ =3g+{€ =3(g+{;) and deg(e,) =1.

Since the third Newton sum is 6;(w, W) = w’ —w°, the
angular wave functions are constructed as

v, (9) = vi¥(0)
3 3.0 -6 - 7@, 3 _3 (33)
riD, — D) AT = A e (W, W),
Vol. 14 No. 2 2017
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The application of the Dunkl operators can be evalu-
ated analytically, arriving at

A~w +W ~r cos(3¢) and (34)
hE )
D, . ¢ ’ ‘
: _ (36)
1 P P } _ T F(g + k)F(g +4£ 3 k) =3k —3k
=9, — + + _t (35 (=1 :
" gh+w% owipi owapm] Z% @I+ T+ €, — k)
with p em/ 3, The table below lists some low-lying hexagonal wave
functions, abbreviating (mm) := w ",
¢ i i i
0 00) 00) (00)
3 10) = (01) (10) = (01) (10) - (01)
6 (20) + (02) (20) — (1 1) + (02) 3(20) — 4(1 1) + 3(02)
9 (30) —(03) (30) - (21 + (12) - (03) 4(30) — 6(21) + 6(12) — 4(03)
12 (40) + (04) (40) — 31) + (22) — (13) + (04)  5(40) — 8(31) + 9(22) — 8(13) + 5(04)

The simplest Weyl antiinvariant build from &£, is the
Dunklized angular momentum itself,

M, ~iwD, - 7D )

~iwd, — d.) (37)
- ig{w — W, +BY _E?a ki p‘fs_}
W+ W pw+pw pw + pw

whose Weyl-symmetric restriction gives a most simple
angular intertwiner,

3 —3
M, ~i(wd, —wd;) —?aigw3 _Vrs
w +w

= iA*(wd,, — W0 ,)A™® = 9, + 3g tan 30,

which allows for an even simpler recursion relation for
the hexagonal wave functions,

(38)

~(g+1) ~(g)

he  ~iA7'(wo,, — Wy )hivs. (39)

Iterating this recursion is an easier way to construct
these wave functions from the ground state.

Because
M{IM)® =-2HE +9g% = —res(L?) = -C¥, (40)

there is no further conserved charge besides the angu-
lar Hamiltonian in the hexagonal model.

4. TETRAHEXAHEDRIC MODEL:
THE SPECTRUM

Now we pass to the next and more interesting case,
n = 4. This angular model is quite new and describes a
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particle on the two-sphere with a non-separable
potential. We call it tetrahexahedric because the sin-
gular loci of the potential are six great circles which
form the edges of a spherical polyeder called tetra-
hexahedron. Therefore, the particle is trapped in one
of 24 identical fundamental domains (the faces),
which have the shape of a (spherical) right isosceles
triangle. It is convenient to pass to Walsh—Hadamard

relative coordinates (due to A, = Ds):

x' =X+%(+x+y+z),

9, = iax +%(+ax +9,+9,),

1

x? =X+ (x-y-2),
9. = iax +%(+ax ~9,-9,),

. (41)
x' = X+ (x+y-2),

1 1
ax3 ZZaX +5(—ax+8y—az),

x* =X+%(—x—y+z),
J . =iax +%(—ax ~9,+9,),

and introduce spherical coordinates
x =rsinBcos¢, y=rsinOsingd, z =rcos6. (42)

No.2 2017
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The angular momenta and the spherical Laplacian
take the familiar form

L,=—(d,-2z0,), L, =—(z0,—xd.),
LZ = _(xay - yax)
and L' = ~(L + L} + L)

=L 9,sin09, - ——32,

sin® sin’ @
angular Hamiltonian

(43)

(44)

and the reads

Hg = %Lz +U(6,) with

U®,0) = 2g(g - (x> +y* +2°)

x£x2+y2 .\ y2+z2 Z2+x2j
(x2 _ yz)z (y2 _ 22)2 (Z2 _ x2)2
=2g(g - l){

1
sin’ Bcos’ 20
cos’0 +sin’Hcos’ 0
(cos2 0 —sin’ O cos’ q))2
cos’ 0 +sin’ Osin’ (0] }
(cos’ 0 —sin’ Bsin’ ¢) '
The tetrahexahedric energy spectrum is given by

(45)

8q=%q(q+1) with ¢ = 6g + €

:6g+3€3+4€4 and €3,€4€N0.

The corresponding wave functions can be computed
from

(40)

vi(6,0) ~ r(@,D D )"

4 4 4.0, xg 1-12¢ _  —q, g7 (47)
X (D + D, + D) A% =r"A%he (x,,2),

with A =(x* -y’ =)0 -7 (48)
and the linear Dunkl operators
@x = ax -_£ Sx+y -_£ sx—y
xX+y xX—y
g g
- Syir — S, s
Z+x % x-z°
_ g g
D,=0,— +xsx+y— _xsx,y
. Y . Y (49)
- Sy, — S, .,
y+z " y=z
gbz = az -2 Setx ~ 2 Sz-x
Z+x z—X
g g
- Syp, — S,
z + y y+z z— y y=z

including the elementary reflections constituting the
S, Weyl group action,

Sxey 1 (61,2) B (=, X, +2),
Sxoy 1 (X, 0,2) > (1,4, +2),
Syez 1 (6 1,2) B (+X,-2,-y),
Sy 1 (6,,2) B (+x,+2,1Y),
- (60,2 B (=2,+y,—X),
Semx 1 (6 1,2) B (2,4, +x).

(50)

The following table lists the low-lying tetrahexahed-
ric wave functions for g =0 and g =1, using the
notation

{rst} = xryszt + xrytzs + xsytzr + xsyrzt + xtyrzs + xtyszr'

GG hine,

0 0 {000}

1 0 {11y

0 1 {400} — 3(220}

2 0 {600} — 15{420} + 30{222}

N W O
SN

N
w O N

3511} — 5331}
{800} — 28{620} + 35{440}
9711} — 63(531} + 70{333}
1 {1000} — 45{820} + 42{640} + 504{622} — 630{442}
5011 — 60{731} + 63{551}
36{1200} — 2376{1020} + 2445840} — 46125{822}+4893{660} — 215250{642} + 179375{444}
101{1200} — 6666{1020} + 47100{840} + 8685{822} — 42609{660} — 40530{642} +33775{444}
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€5 ¢, it(elz,m

0 0 {000}

1 0 a1

0 1 3{400} — 11{220}

2 0 3{600} — 39{420} + 196{222}

1 1 5511} —13{331}

0 2 {800} — 20{620} + 23{440} + 12{422}

3 0 {711 —27{531} + 56{333}

2 1 151000} — 425{820} + 576{640} + 7568{622} — 14454{442}

1 2 350011} — 476{731) + 477{551} + 204{533}

4 0 12{1200} — 456{1020} + 657{840} + 13581822} + 1137{660} — 88842{642} + 114007{444}
0 3 813{1200} — 30894{1020} + 165652{840} + 72131{822} — 147943{660} — 169702{642} + 57527{444}

We note that these are eigenfunctions of the free and taking the Weyl-symmetric reduction we obtain a
1 first angular intertwiner,

model, Hg = ELZ, since the potential is absent at
g =0 or 1, but they are §, invariant, The interacting M, ~ y2zazxx - yzzaxxy + l(y2 - zz)axx
eigenfunctions are of the same form, only the coeffi- 2
cients depend on g. + 4g 2yz (20, + xZayZ — 2x0,,)
5. TETRAHEXAHEDRIC MODEL.: ) 2 8g
INTERTWINER AND INTEGRABILITY +gl28yz [xz _ yzj(zz _ xzj

In order to construct the intertwiners of the tetra-
hexahedric model, one starts with the angular Dunkl 16g 2g —1 2g —1
operators, +

LR BT

L.=L + SRR S A
x x 8 x—y x=y )C+y x+y X—2 7-x _ 2x2y2 . 2x2Z2 B 2y2
Yy y+z y—z (2—x2]2 (x2— 2)2 x> -y
+ Sy — S, F sy+z}, < Y
I+Xx y—z y+z 2z2 y2+z2
$ =L +g X ¢ X Sper — < S T 2_2 2 2}Xax+2g(g—l)(g+2) (53)
y y y—z y—z y+z y+z y—x y (51) Z X y z
z i+ x z=x 2| V42 1 1
+ Syry — S. Soex b X X stz = 3
ytx I—X Z+Xx (,)/2—22) (y—2) (y+2)
P =1 + {y P A S 2 ‘47
4 z gz_xz z+x Z+ z_yyz +g(2g +8g_l)y2 5
_ y =z
= Sy+z_x+ysx—y+x ny+y}' 2 x*y’z’
z+y x_y x+y +2g (8+9g) 2 2 2 2 2 2
It turns out that the simplest Weyl antiinvariant is (x _6y )()6“ _6Z )" =27)
cubic, 2 3 X +y +z2

e

+ cyclic permutations.

A, ~é(§£x§£y5£z+5£x5£zsgy

* §£y £ Z‘SB" +2£ y'SB x‘gz (52) In the ‘potential-free frame’, attained by a similarity
+ £ LE +LLL), transformation, it simplifies to

PHYSICS OF PARTICLES AND NUCLEI LETTERS  Vol. 14 No.2 2017
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A_gMSAg -~ yzzazxx - yz2axxy

2 2 2 2

yz(y -z2)
< =pHP -2 "

+ %(y2 ~ 20, +2g

2
+4g=Y50 (54)
X —Z
+ 2ex yz(x2 n 3z2) B zz(xZ + 3y2)
(x2 _ Zz)z (xz _ y2)2 x
+ cyclic permutations.

The next independent antiinvariant is sextic,

~ALLLN L P+ L L
{ St o+ o) (55)

{5/34 PNHHLLL L, 582}
and gives rise to a rather lengthy expression (not dis-
played) for a second intertwiner M,. We expect that

A™¥ M A* is more compact. All higher angular inter-
twiners can be reduced to M, and M.

Let us finally take a look at the conserved charges
in this model. It is not hard to see that they are gener-
ated by

Ji = res(E + £+ L) for k =1(0,)2,4,6, (56)
and J, =-C, =-2Hg + 6g(6g +1).

Higher conserved charges are algebraically depen-
dent, e.g.

6Jg =8J¢J, +3J,J, —6J,J 30, +J,0,0,0,
— 12(8+5g+12g%)J,+4(34+23g +30g%)J,J,
— 8(5+3g+3g%)J,J,J,
+ 24(13+15¢-102g%-72g%)J,
— 4(43+70g-252g2—144g%)J,J,
- 48(1+3g)(1+4g)(1-12g)J,.
Any word in {J,,J,,J4} is conserved, but there are

some relations in their algebra. Namely, J, and J,
span the center, and

[/2, 4l =15, /s =0 but [J,,Js]#0, (39)

so J,J¢ and J4J, are two independent new words. The
basic intertwining relations read

MEJE =¥ —6(7 +120)ME,
METE = EY —411+ 12g)J(g+l)
+ 4826 + 73g + 482" WM ¥ +2M 2,
M3(g)J(g) (J(g+1) (35 + 36g)J(g+1)
= 3(7 +4g)JF VY
+2(1111+2668g +1392g%)J ¢
+96(457 +1933g +2717g° + 1368g" + 144g )M ¥
+ (3JE™ —(115+200g + 48g° )M L.

(57)

(58)

(60)

PHYSICS OF PARTICLES AND NUCLEI LETTERS

Particular conserved quantities are obtained by inter-
twining ‘back and forth’, e.g.
MIM, =12J,—18J,J, +6J,J,J,
—6(11+16g —48g°)J, +3(13 + 24g —48g°)J,J,
+ 12(1+3g)(1+4g)(1-12g)J,,
MIMy =120, +12{J,J }J,

- %JéJZJ Jy+ 20y 180,00,

(61)

+6J,J,J,J,J, —§J2J2J2J2J2J2 +lower-order terms,

and similarly for M, M, and M{ M. An additional set
of ‘odd’ conserved charges appears due to the equality

HY = H3™® (here = =3 or 6):

-1) -2 1-
= MEME M

(62)
(&) @ _ (I-g) _ &) (&)
= Qs xHg' =0k 5 Hg ™ = Hy Qs s

Combining all charges one ends up with a 7, graded
nonlinear algebra generated by {Q, J,,J 4, J ¢}

6. SUMMARY AND OUTLOOK

Let us summarize. We have presented a geometri-
cal picture of a superintegrable but not separable

potential on S "2 The full set of conserved charges is
characterized by the Weyl invariants built from the
Dunkl-deformed angular momenta. Their algebra is
largely unexplored, and it remains to be seen whether
there exist bone fide Liouville charges (i.e. n—2
charges in involution). This angular Calogero system
features a whole set of angular intertwiners (which also
intertwine the full Hamiltonian), given by the Weyl
antiinvariants built from the angular Dunkl operators.
Their form and action on the conserved charges was
elucidated in the n = 3 (Poschl—Teller or hexagonal)
and n =4 (tetrahexahedric) cases. For integer cou-
pling there exist additional ‘odd’ conserved charges
which, however, have a singular action on the energy
eigenstates. This can be cured by a P T deformation,
which regularizes the potential to singular loci of cod-
imension two and brings the (so far singular) negative-
coupling states into the picture.
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