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Abstract⎯In this presentation we give a short overview of Newton–Cartan geometry and gravity and some
recent results about its matter couplings.
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1. INTRODUCTION
It is well known that in Newtonian gravity free-fall-

ing frames are connected by the Galilean symmetries
which consist of (constant) time translations, spatial
translations, spatial rotations and Galilean boosts.
These Galilean boosts rotate space into time but not
the other way around since Newtonian time is abso-
lute. In such free-falling frames one does not experi-
ence any gravitational force. Such a force is only felt in
frames that are not free-falling. For instance, in a
(non-rotating) earth-based frame, that is in constant
acceleration with respect to a free-falling frame, one
experiences a gravitational force that is described by
the Newton potential satisfying a Poisson equation. Of
course, in a different frame than an earth-based
frame, one experiences a different gravitational force
that, in principle, can be calculated by relating that
frame to a given earth-based or free-falling frame.
However, a truly frame-independent formulation of
Newtonian gravity was never given by Newton and his
followers. The reason for this is that in order to give
such a frame-independent formulation one needs a
piece of mathematics that was not yet developed
around that time. It was only in the middle of the 19th
century that Riemann developed the required tool that
is now called geometry.

When Einstein invented his General Relativity the-
ory in 1915 he achieved two things. First of all, he
made his way of describing gravity consistent with the
Special Relativity theory he had developed 10 years
earlier by making use of the geometry of spacetime to
give a proper description of gravity. In this way he built
in a delay effect that avoided the instantaneous gravi-
tational force of Newton. But most importantly, and

this took Einstein many years of hard work to achieve,
he presented his equations in a frame-independent
way. For this, he needed the Riemannian geometry
mentioned above and communicated to him by his
friend Albert Grossmann. Free-falling frames in Ein-
stein’s theory are connected by the Poincare symme-
tries. These differ from the Galilean symmetries only
as far as the boosts are concerned. Unlike the Galilean
boosts the Lorentzian boosts rotate space into time
and time into space: the concept of time is relative in
Einstein’s theory. Furthermore, to obtain a frame-
independent formulation Einstein introduced a sym-
metric tensor field to describe the gravitational force.
This field replaces the Newton potential and describes
geometrical distances in the Riemannian spacetime
manifold.

It was only 8 years later that Elie Cartan did for
Newtonian gravity what Einstein had achieved for rel-
ativistic gravity. The formulation of Newtonian gravity
in an arbitrary frame goes under the name of Newton-
Cartan (NC) gravity. This NC gravity theory contains
more fields that just the Newton potential. The formu-
lation given by Newton, with a Newton potential in an
earth-based frame, can easily be obtained from the
general formulation by an appropriate gauge-fixing of
the gravitational fields such thatone is left with the
Newton potential as the only non-zero field. The
geometry Cartan was using is called Newton–Cartan
geometry. This NC geometry differs from the Rie-
mannian geometry used by Einstein in the sense that it
is a foliated geometry with an absolute time direction.

Given NC geometry and gravity the question
arises: why should we study non-relativistic gravity?
There are two main reasons why NC gravity has seen a
return of interest in recent years. First of all, it arises in
the context of the so-called holographic principle1 The article is published in the original.
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which states that all the information about a gravita-
tional theory in a given volume can be encoded by a
different so-called field theory that lives on the surface
surrounding this volume. This holographic principle
has found a precise mathematical framework in string
theory where it goes under the name of the so-called
AdS/CFT correspondence. This is a special situation
where the gravity theory lives in a maximally symmet-
ric spacetime with a negative cosmological constant, a
so-called Anti-de Sitter (AdS) spacetime, and where
the field theory is a special so-called conformal field
theory (CFT). In recent years people have studied also
non-AdS holography to understand the validity and
the basic principles underlying the holographic princi-
ple. One of the simplest deviations of AdS is a Lifshitz
spacetime which has less symmetries than AdS. Cor-
respondingly, it has been found that at the field theory
side the relativistic scale invariance of the CFT is bro-
ken to a non-relativistic scale invariance correspond-
ing to a field theory that couples to an extension of NC
geometry with so-called ‘twistless torsion’ [1]. Quite
independently, NC geometry has found recently
applications in the condensed matter physics commu-
nity. Independent of any holographic interpretation
one works here with an Effective Field Theory (EFT)
coupled to NC geometry to describe general features
of models such as the fractional quantum Hall effect
[2], chiral superfluids and simple f luids. The coupling
to NC gravity means that one uses an arbitrary frame
formulation in which general features are visible. One
could compare this with the Coriolis force that is not
visible in a non-rotating earth-based frame but can
only be observed in a more general (rotating) frame.

Having the above motivation in mind we will first
show in the section 2 how NC gravity can be obtained
via a kind of gauging procedure from the centrally
extended Galilei algebra which is called the Bargmann
algebra. Next, in section 3, we will discuss some recent
results on matter couplings.

2. NEWTON–CARTAN 
FROM GAUGING BARGMANN

Let us first remind ourselves how to obtain Einstein
gravity via a kind of gauging procedure from the Poin-
care algebra. In general relativity all free-falling frames
are connected by the following Poincare symmetries:

• space-time translations: ,

• Lorentz transformations: .

In arbitrary frames the gravitational force is
described by the metric field. Instead of a metric, it is
convenient to use an equivalent Vierbein formulation,
with Vierbein field  since
these Vierbeine are naturally related to the gauge fields
of Poincare translations.

μ μδ = ξx

μ μ ν
νδ = λx x

μ μ = , , , ; = , , ,( 0 1 2 3 0 1 2 3)Ae A

In the non-relativistic case all free-falling frames
are connected by the Galilean symmetries:

• time translations: ,

• space translations: ,

• spatial rotations: ,

• Galilean boosts: .
They are identical to the Poincare symmetries

except for the Galilean boosts which differ from the
Lorentzian boosts as we discussed in the Introduction.

It is important to distinguish Newtonian gravity
from Newton–Cartan gravity. Newtonian gravity is
valid in frames of constant acceleration with respect to
free-falling frames and is described by a single Newton
potential . On the other hand, Newton–Cartan
gravity is valid in arbitrary frames and needs more
fields to describe the gravitational force. To be precise,
the required fields are a so-called temporal Vierbein

 and a spatial Vierbein . Since these two

fields together form a 4 × 4 matric  one would
think that these fields suffice. Surprisingly, one needs
one more field to describe Newton–Cartan gravity,
namely a vector field 

One way to understand why this extra field is
needed is to compare a freely moving relativistic parti-
cle with its non-relativistic counterpart. On the one
hand a relativistic particle is described by the action

(1)

where  are the embedding coordinates. Clearly,
the Lagrangian corresponding to this action is invari-
ant under the Poincare symmetries. On the other
hand, a non-relativistic particle is described by the
action

(2)

In this case the Lagrangian corresponding to this
action is not invariant under Galilean boosts. Instead,
the Lagrangian transforms with a total derivative as
follows:

(3)

Although the action is invariant, the non-invariant
Lagrangian leads to modified Noether charges which
induce a central extension of the underlying Galilei
algebra. One thus ends up with the Bargmann algebra
where the gauge field of the extra central charge trans-
formation is the vector field .

Before gauging the Bargmann algebra it is of inter-
est to compare gaugings and Inönü–Wigner contrac-
tions of algebras and taking the non-relativistic limit of
gravity. We have indicated the relations between these
different manipulations below.
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We see that, in order to obtain the Bargmann alge-
bra from a contraction of the Poincare algebra we need
first to extend the Poincare algebra with an additional
U(1) generator, in order to account for the central
charge generator which is present in the Bargmann
algebra on top of the usual Galilei generators. This
suggests that the non-relativistic limit of general rela-
tivity can only be taken in the presence of an additional
vector field that corresponds to the extra U(1) genera-
tor. This non-relativistic limit should mimic the
Inönü–Wigner contraction of the algebra.

We now return to the gauging of the Bargman alge-
bra [3] which is based on a similar gauging procedure
developed in the supergravity community many years
ago [4]. Our starting point is the set of commutation
relations defining the Bargmann algebra

(4)

where  are the generators of time
translations, space translations, spatial rotations, Gal-
ilean boosts and central charge transformations,
respectively. In this gauging procedure we associate to
every generator/symmetry a gauge field, gauge param-
eters that are arbitrary functions of spacetime and
covariant curvatures as indicated in the table below.

From the Table we see that besides a timelike Vier-
bein  and a spatial Vierbein  there are two inde-

pendent spin-connection fields  of spatial
rotations and Galilean boosts, respectively, and a
gauge field  for the central charge transformations.
Following general relativity, in order to make the spin-

connection fields dependent we need to impose con-
straints on the curvatures. Unlike general relativity,
the curvature  of time translations cannot play
any role here since that curvature does not contain any
of the two spin-connections fields. At this point the
curvature  of the central charge transforma-
tions comes to help since that curvature does contain
the spin-connection field of the Galilean boosts.
Independent of this we do set the curvature of time
translations to zero since this defines the foliation of
spacetime. We thus arrive at the following setof curva-
ture constraints:

(5)

(6)

(7)

(8)

Note that the zero torsion constraint (6) allows us
to solve for the timelike Vierbein in terms of an arbi-
trary function  of the spacetime coordinates.
Choosing  defines the time-coordinate  to
be the absolute time but there are other choices possi-
ble as well.

Following the standard gauging procedure one
ends up with three independent gauge-fields

 that transform under general coordinate

transformations, with parameters , as covariant
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This table indicates for every symmetry the corresponding generators, gauge fields, local gauge parameters and covariant
curvatures

Symmetry Generators Gauge field Parameters Curvatures

Time translations

Space translations

Galilean boosts
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vectors and under the other Bargmann symmetries as
follows:

(9)

Furthermore, one may define two Galilean-invari-
ant metrics

one in the time direction and a separate one in the spa-
tial directions. Note that the timelike metric is only
defined with lower indices whereas the spatial metric
is only defined with upper indices. Without the central
charge vector field it is not possible to define a timelike
metric with upper indices and a spatial metric with
lower indices that is invariant under Galilean boosts.
Such unwanted variations can only be canceled by
adding -dependent terms to these metrics.

Now that we have defined the symmetries of NC
gravity in arbitrary frames it is easy to switch between
frames. For instance, to go from the general frame for-
mulation back to the free-falling frames only, one
must impose the following gauge-fixing conditions
eliminating all gravitational fields:

(10)
This leads to the following non-relativistic Killing
equations:

(11)

whose most general solution is given by the Galilean
symmetries connecting free-falling frames:

(12)

Instead, one could also go from general frames to
frames with constant acceleration. In that case one has
to impose less stringent gauge-fixing conditions in
which the Newton potential survives as one of the
components of the gravitational fields. This gauge-
fixing automatically gives the correct transformation
rule of the Newton potential under the Bargmann
symmetries.

So far, we have only defined the kinematics of NC
gravity. To define the dynamics we need to impose
equations of motion. For this purpose we introduce
the following equations:

(13)

(14)
where we have indicated at the right the representa-
tions of spatial rotations to which these equations
belong. The first singlet equation reduces to the Pois-
son equation for the Newton potential after gauge-fix-
ing to frames with constant acceleration. Note that,
without the second equation, the first equation would
not be invariant under Galilean boosts. The number of
equations is the same as in general relativity but the
number of the independent fields is not the same.
Therefore, there is no obvious way to integrate the
above NC equations of motion to an action.

3. ADDING MATTER

One way to add matter to NC gravity is to start from
the relativistic answer and take the non-relativistic
limit. In this way one obtains matter couplings from
arbitrary contracting backgrounds [5].2 As a bonus this
also gives an elegant way to derive non-relativistic field
theories from relativistic ones. In the figure below we
have indicated how this works for Klein–Gordon ver-
sus Schrödinger.

We first define the non-relativistic limit of general
relativity without matter by mimicking the Inönü-
Wigner contraction of the corresponding algebra as
much as possible. This contraction works as follows.
Our starting point is the Poincare algebra plus an addi-
tional U(1) generator  that commutes with all the
Poincare generators:

(15)

Here  are the generators of spacetime
translations and Lorentz generators, respectively.

Next, we decompose  and relate the Poin-
care  U(1) generators  to the Barg-
mann generators  as follows

(16)
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where we have introduced a contraction parameter .
In a second step, taking the limit , we obtain
the Bargmann algebra including the following com-
mutator containing the central charge generator :

(18)
Inspired by the above Inönü–Wigner contraction

we now define the non-relativistic limit of general rel-
ativity as follows. We first introduce, on top of the
Vierbein field, a vector field  with  Next,

we relate the relativistic gauge fields  to the

non-relativistic gauge fields  as follows:

(19)

This implies for the inverse Vierbein fields the follow-
ing relation:

(20)

The definitions of the non-relativistic inverse fields
 we have used here can be found in [3].

In a second step we now take the limit . In
this way we obtain the correct non-relativistic trans-
formation rules (9) and the equations of motion (16).
Note that the standard textbooks on general relativity
usually go straight from general relativity to Newto-
nian gravity skipping the general frame formulation of
NC gravity.

As an example we consider a complex scalar of
mass  with Lagrangian given by

(21)

(22)
In a free-falling frame this Lagrangian reduces to the
standard Klein–Gordon Lagrangian. Note that  is
not an electromagnetic gauge field. The mass  is not
equal to the electric charge . Instead the gauge field

 couples to the current expressing the conservation
of # particles- # anti-particles.

We now take the non-relativistic limit of general
relativity as defined above together with

. This leads us to the following

Schrödinger Lagrangian coupled to NC gravity:

(23)

(24)

In a free-falling frame this is the standard
Schrödinger Lagrangian. Note that the non-relativis-
tic gauge field  couples to the current that expresses
the conservation of # particles only. Intuitively, the
extra vector gauge field takes care of the infinities that
occur if you switch between a Lagrangian with 2 time
derivatives and a Lagrangian with one time derivative.
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