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1 1. INTRODUCTION

This paper is a further development of the approach
published in Comp. Phys. Comm. 185, 933–938
(2014).

An exponential distribution (ED) plays a very con�
spicuous role in the experiments dealing with the
radioactivity. Among them the most advanced ones,
e.g., such as the synthesis of superheavy elements or
the like ones are characterized by a very small output
so that the information about the physical meaning of
the observed process should be derived only from this
scarce data.

Generally, if the observed data contains a little of
information there are only three means to overcome
this defect:

• large statistics of the data;
• superefficient estimation. It is the case when the

accuracy of the unbiased estimate of the mean, based
on m events, depends not on 1/m (as in usual efficient
case) but on 1/m2. The former means: 4 times more
events—2 times better the accuracy. The latter:
2 times more events—2 times better the accuracy—
this is very profitable for the low statistics.

• a lucky chance—if the registered data are close
(by accident) to the parameter of interest (usually the
mean) of the distribution.

The first point is excluded from our study; the sec�
ond one applies only to the uniform distribution.
Thus, only the third one remains at our disposal. Let
us call a distribution tolerant to the low statistics, if

1 The article is published in the original.

1. it has a finite variance;
2. it has a property: any event falls into a Δ long

vicinity of the mean with a greater probability than
into any other interval of the Δ size (Δ is an arbitrary
value).

it has a property: any event falls into the vicinity of
the mean with a greater probability than into any other
interval.

2. THE MAIN DISTRIBUTIONS, 
WHICH TOLERATE THE LOW STATISTICS

Let the expectation of a random quantity be the
parameter of interest. Then the following distributions
tolerate the low statistics.

• The normal distribution. Its probability density
function is

(1)

Here the center c is the parameter of interest. For
any time interval of a however small length δ, contain�

ing c. we see that the probability  that our

event falls into this interval is the greatest. It means
that for experiments with low statistics the normal dis�
tribution is rather favorable—we have here the great�
est chances that the events will be closely spread
around the mean c, even if there are only few of them.

This gives us a possibility to define the low statistics
formally. Referring to the widely spread semi�empiric
opinion that in the practice the average of 5 and more
random values has already approximately the normal
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distribution, we can suggest that the data has a low sta�
tistics if it consists of not more than 4 items.

• The Poisson distribution. It is a distribution of a
discrete random integer�valued variable ξ:

(2)

where a (the parameter of interest) is both the mean
and the variance.

The value nx, where (2) is maximum, is close to a
or, rather, to its nearest integer value.

So we see that (2) is also rather tolerant for the low
statistics.

To a certain extent the above deinition of the toler�
ance to the low statistics is qualitative. One can invent
densities which formally satisfy it but intuitively can’t
be considered as tolerant, and, vice versa, one can
invent such densities, which formally don’t satisfy the
above definition, but intuitively can be considered as
tolerant. Examples are as follows.

1.

where f(x) is defined in an interval of the x�axis of the
length c ⋅ (2k + 1), and � is a small positive number.

2.

where f(x) is defined in an interval of the x�axis [0, L],
a is an inner point of this interval, p is a constant, and
� is a small positive number so that a + � is much
smaller than L.

However, the above definition conveys the idea of
the tolerance to the low statistics, and gives reliable
examples of tolerant distributions (the Poisson and
Gauss ones), so that if a distribution is close to either
of them in the sense of the C�metric, it can be counted
tolerant.

3. THE EXPONENTIAL DISTRIBUTION

Unfortunately, the absolute majority of other
widely used distributions don’t favor the low statistics,
and among them the most striking example of the con�
trast between “the most probable” and “the most
expected” is given by the exponential probability dis�
tribution.

The exponential distribution (ED(T)) for the
quantity ξ with the parameter T is defined as follows

(3)
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0 elsewhere.⎩
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=

Here t is the time. In the applications such form of
the T parameter is preferable, since in this case T (the
decay constant) and t are measured in the same direct
time units. We have here the distribution density p(t) =
exp(–t/T)/T, which is non�zero valued in [0, ∞) and T
as the mean and T2 as the variance.

At t = 0 the density p(t) has the maximum and it
means that the decays however close to t = 0 are the
most probable ones. In [1] it has been shown that while
observing a radioactive decay we have almost thrice
more chances to observe a value close to 0 than to T.

It doesn’t play an essential role if the statistics is
large, but it may be of crucial importance if we have
only few events.

A radioactive process looks like this—an avalanche
of events at the beginning, and then the succession of
a diminishing geometric progression of the rest. This is
a contrast to the normal distribution.

4. THE GAMMA�DISTRIBUTION

For an exponential random quantity ξ there is a
distribution which is closely connected with it. It is the
one with the following density function

(4)

where m is positive integer, and T is positive real.
The mean of the distribution (4) is mT and the vari�
ance mT2.

For m = 1 the function (4) is the usual exponential
probability distribution.

Let a sample of random values t1, t2, …, tm of ξ be
given, and consider the following quantities

(5)

The random quantity S has the (4) distribution
(see e.g. [2]). The density of the Sm distribution is
m ⋅ g(mt, m, T), and its mean and the variance are
equal to T and to T2/m, respectively. The maximum of
the density (let it be tx) is reached at the root of the
equation

from which we obtain tx = (m – 1)T/m.
For the case of low statistics (m = 1, 2, 3, 4)) we see

that this maximum is rather far from the mean T. For
instance, if m = 2, the distances between 0 and tx, and
between tx and T are equal to T/2, i.e., for m = 2 the
half�sum (t1 + t2)/2 has equal chances to be close to 0
as well as to T.
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If m =3, then the (t1 +t2 + t3)/3 has 2 chances
against 1 that it will be closer to T than to 0; and so on:
m – 1 chances for “T” against one chance for “zero”.
While m  ∞, according to the Central Limit Theo�
rem the distribution (4) tends to the normal one with
the center T.

Summarizing, we can say that the gamma�distribu�
tion is not tolerant to the extremely low statistics (m =
1, 2, 3, 4).

5. THE PROBLEMS

Given a random sample S = ti, i = 1, 2, …, m of size
m from an ED (the times of a radioactive decay) we
can specify the following tasks of their analysis

1. On the basis of S estimate the T parameter and its
accuracy;

2. For the given T test the hypotheses:
(a) Does each of ti, ti ∈ S correspond to the model

F(t, T)?
(b) Has the whole set S the distribution F(t, T)?
We shall start with the second problem, because for

the rare events one can get more reliable results for the
statistical tests rather than for the parameter estimates.
To make a decision on the correspondence of the set S
to F(t, T) it is necessary to build a CI—a confidence
interval (in the decision making called also critical
region); it is an interval [a, b] on the t�axis, into which
the tested values of our random variable ti (case (a)) or
some function s of the set S (statistic) (case (b)) fall
with a certain confidence probability (Pc); if the event
ti or the statistic s fall into [a, b], then they don’t con�
tradict the tested hypothesis that the distribution is
really F(t, T) (but, of course, do not yet confirm it).

As a rule, use is made of a two�sided CI [M ± σ],
where M is the mean value and σ is the square root of
the variance.

For the Gaussian distribution this corresponds to
Pc ≈ 0.68, and for such a test the ratio of the ‘pro’ and
‘contra’ chances is equal to approximately two.

However, in our case one�sided CIs are also of great
interest ([1]), when, e.g., m = 1, i.e. for the problem 2(a).
These CIs have the form [0, 2T], where T is the tested
value of the ED parameter, since in case of an ED
events, which are close to 0, occur with the maximum
probability, and, of course, 0 should be the lowest
bound of such a CI. REMARK. The lowest CI bound
in case of hypothesis testing should not be confused
with the lowest CI bound in parameter estimation. In
the latter case a CI [Tmin, Tmax] describes with a certain
confidence probability the most probable values of the
T�parameter, and, of course, Tmin is always greater
than 0.

In case of hypothesis testing a CI [tmin, tmax]
describes with a certain confidence probability the
most probable t values for the tested T parameter, and,
therefore, tmin can be equal to 0.

A two�sided CI for the testing hypotheses is appro�
priate if 0 is not the value of the maximum probability
density.

6. OPTIMIZATION 
OF THE CONFIDENCE INTERVAL

For a given F(t, T) we shall use a concept of an opti�
mal conidence interval [a, b] (OCI) described in [1].
Such an OCI should have minimal difference b – a,
and at the same time the probability of the events to
belong to the interval [a, b] “pro chances” should be
maximum; since these conditions contradict each
other an OCI is one of the two compromises:

• for a given length b–a find an interval with the
best ratio “pro/contra”;

• for a given ratio “pro/contra” find an interval of
the shortest length b–a.

Apart from this the physical meaning of the interval
[a, b] and its bounds a and b should be clear and natural.

For an exponential distribution F(t, T) and m = 1
one can propose a semi�empiric approach which
would allow us to build such a one�sided OCI (i.e.
[0, 2T]) with a minimum of arbitrary assumptions
about the data [1].

Let us see what can be done for the case of two�sided
CI’s (m > 1). Let σ be the square root of the Sm variance.
Then the usual two�sided CI is [T – σ, T + σ]. It is a
fixed compromise between the size of the CI and the
area of the total probability covering it. However, it is
not clear how this probability is distributed within the
CI—generally this CI does not reflect the structure of
the ED, in particular, its asymmetry. Thus its physical
meaning is often not clear. Therefore, it would seem
desirable to elaborate a scheme of a CI, which would
keep the advantages of the usual CI and be free of its
drawbacks.

7. ORDER STATISTICS

For this reason let us make use of so called order
statistics. The method based on them is in our case of
an ED especially convenient because they can be rep�
resented as easily integrable analytical functions.

Let the items ti of a sample S be arranged in an
increasing order. Following [2] we define the following
order statistics

1. denote the minimal value in the sample S as u1;
it is a random quantity with the probability density

g1 u1( ) m
T
��� m– u1/T⋅( ) for u1 0.≥exp=
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2. and denote the maximum value in the sample S as
um; it is a random quantity with the probability density

Omitting integrations, which can be easily recon�

structed, we get the expectations  and  for the
cases of low statistics, i.e. for m = 2, 3, 4.

To compare a UCI—usual confidence interval

[T –  T + ] and an OCI [Tmin, Tmax] let us
consider the following two tables for the different T;
one can see that the results weakly depend on the
parameter T (certainly, excepting the interval length).

Here Prob “pro” is the probability to accept the
hypothesis if the tested value falls into the CI.

The analysis of these tables allows us to make such
conclusions

• The OCIs really have a special psychological
advantage—they have the most clear interpretation as
bounds between the most typical minimal and the
most typical maximum values of the random quantity.

• For m = 2 the probability covering the OCI may
seem to be too small; in this case it is more appropriate
to solve the following optimization problem: for the
fixed probability (e.g.0.68) find the shortest CI;

• For m = 3, 4 the optimization is: among the inter�
vals with the length 3/2T and 11/6T, respectively, find
those having the greatest covering probability.

In all the cases to keep the clearness they should
have either a as the 1st order statistic or b as the maxi�
mum order one or both should be those of OCIs (see
the example in the section Testing.)

8. PARAMETER ESTIMATION

In the case of an ED and data with low statistics this
problem requires a special consideration. The usually
used maximum likelihood estimator (MLE) is the

average  = Sm given by (5), which for the case of one
event is the data t1 itself,

• Case of 1 event. The MLE is based on an assump�
tion that on the average the data likelihood is maxi�
mum, that here turns out to be false. In the case of one
event t1 it is more reasonable to consider t1 as an esti�
mate of the lower bound for T, the argumentation
being as follows.

The probability Pk of an inequality t1 < kT is equal
to Pk = 1 – exp(–k); here k is an arbitrary number. We
can try different estimates of T, which still guarantee
that the inequality holds. The minimal of them is obvi�

ously  = t1/k. It is the estimate of the lower bound of
T with the confidence probability Pk which depends
on k. For k = 2 P2 = ≈0.865; For k =1 P1 = ≈0.63.

gm um( ) m
T
��� um/T–( ) 1 um– /T( )exp–( )m 1–exp=

for um 0.≥

Êu1 Êum

mT, mT

T̂

T̂

• Case m events, m = 2, 3, 4. The estimate of T is Sm
(the average), and it is appropriate to take as bounds
the same OCI, based on order statistics [Tmin, Tmax],
for the same reasons as in case of the hypothesis test�
ing. It provides a better compromise between the
CI length and the probability covering it than the
UCI does.

9. HYPOTHESIS DISCRIMINATION

Testing hypotheses gives us an answer to a question:
CAN the tested value originate from the tested distri�
bution? But it gives no answer to the question: DOES
the tested value originate from the tested distribution?

Such answers can be obtained using the techniques
of the hypothesis discrimination. In our case we can
proceed in the following way.

In principle, the problem can be solved by testing a
finite number of hypotheses exhausting all the realistic
interpretations of our data (if it is possible) and select�
ing only one which does not contradict the data, while
all the other do. Certainly, in our case of low statistics
a more or less reliable discrimination can be made of
not more than 2 hypotheses. So we have the two
hypotheses—H0 : that T = T0, and HA : that T = TA,
Let TA > T0.

• Case of one ti. We shall use the OCI’s for 1 event
described in [1]. Events from the interval [0, 2T0] do
not contradict the both hypotheses; events from
[2T0, 2TA] contradict only H0, and events from [2TA,
∞] contradict the both H0 and HA. The critical region
is the interval Cr = [2T0, 2TA]. If t1 ∈ Cr, we accept HA

and reject H0. The Type I error (to reject the true

hypothesis) is equal to  if H0 is

true, and the Type II error (to accept the false one) is
the same.

• Case of several ti. The average Sm (5) has the
m ⋅ g(mt, m, T) distribution, where g(t, m, T) is the
gamma distribution (4). Taking the order statistics
intervals [T0min, T0max] and [TAmin, TAmax] as OCIs we
can build the critical region for the discrimination of
H0 and HA. For the simplicity reason suppose that
T0max > TAmin. Let us use the following notation:

a1 = T0min; a2 = T0max; b1 = TAmin; b2 = TAmax.

We can divide the whole t�axis into the following
intervals

R1 = [0, a1], R2 = [a1, b1], R3 = [b1, a2],

R4 = [a2, b2], R5 = [b2, ∞]

and set up the following rules for the decision making
1. if Sm falls into R1 or R5 the data contradicts the

both hypotheses;
2. if Sm falls into R2, H0 is accepted, and HA is

rejected;
3. if Sm falls into R4, H0 is rejected, and HA accepted;

t– /T0( )/T0exp t,d
2T0

2TA

∫
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4. if Sm falls into R3, the hypotheses can not be dis�
tinguished (for this statistical level), both the hypothe�
ses can be accepted.

The figure can illustrate this case.

The Type I error is  and

the Type II error is 

From the Table 1 we can get the values of the order
statistics for m = 3

Calculating the integrals of the Type I and II errors
we shall get: TI error ≈ 0.488 and TII error ≈ 0.447.
Chances to discriminate the hypotheses for m = 3 and
the ratio TA/T0 = 2, given by these probabilities, are
not too large. However, if TA/T0 = 3, the correspond�
ing probabilities are 0.364, 0.352 and the chances
increase, even if m remains the same.

We can build a function f(R = TA/T0), which
describes the dependence of Type I and II errors on R
and estimate the optimum R for which the hypothe�
ses can be discriminated with acceptable error prob�
abilities.

10. RADIOACTIVITY AS TIME PROCESS

There are the two types of the registration of a
radioactive decays proceeding in the time

• that beginning at a definite point t = 0;
• that performed within a finite time interval [t1, t2],

t1 ≠ 0 and t2 ≠ ∞.

t– /T0( )/T0exp td
TAmin TAmax,∫

t– /TA( )TAexp t.d
T0min

T0max

∫

T0min T0/3, T0max 11/6( )T0,= =

TAmin TA/3, TAmax 11/6( )TA.= =

The first model suggests that at a certain moment a
decaying mass emerges at once; the second one is
more complicated for the analysis and we consider
it here.

As mentioned above a radioactive process is an ava�
lanche of events at the starting moment of the mea�
surement and then the succession of a diminishing
geometric progression of the resting decays� Suppose
that the decaying mass has sufficiently many objects
and is in an equilibrium state (no new objects appear).
Theoretically, any two finite observation intervals, in
which the number of registered events is greater than
zero, contain the information about the decay con�
stant T. In [1] it has been shown that if the decaying
mass is sufficiently large then for a however big decay
constant the probability that at a finite point t1 a decay
will take place, tends to 1, if t  ∞. But the accuracy
and reliability of the T estimate is negatively influ�
enced not only by the low statistics, but also by the
trimming of the observation interval: [t1, t2] instead of
[0, ∞].

Let us consider the case two in more detail� If the
events are observed only within an interval [t1, t2]
(a limited subinterval of the whole t�axis) and the
events falling in [0, t1] or [t2, ë%] are not registered, the
distribution function is

(6)

We have the distribution density which is non�zero
only in [t1, t2] where it has the form

(7)

Its mean Tt is given by the formula

Ti = T(exp(–t1/T)(t1/T + 1) 

– exp(–t2/T)(t2/T + 1))/exp(–t1/T ) (8)

– exp(–t2/T)).

The mean (8) can differ very strongly from the
“true” mean T. (that is from the mean value corre�
sponding to (3)), especially if the sample is trimmed in
the vicinity of zero, and obtaining an accurate esti�
mate of T is a not easy problem.

In case of low statistics we can not use histogram
methods for the evaluation of T; the maximum likeli�
hood estimator fails here too. Indeed, the likelihood
function is

(9)

and the maximum likelihood estimate of T is its value
at which (9) has the maximum. Substituting (7) in (9)
for p(tj) we see that the maximum of (9) will be reached
at T = ∞, if, at least, one tj gets in the interval [t1, t2].

F t T,( )
1 t/T–( ) if t t1 t2,[ ];∈exp–

0 otherwise.⎩
⎨
⎧

=

p t( ) t– /T( )/T/ t1– /T( ) t2– /T( )exp–exp( ),exp=

L T( ) p Tj( )
j 1=

m

∏=

y

0
a1 b1 b2a2

TA

T0

x

The gamma�distribution m = 3. The confidence intervals
[a1, a2] (thin line) and [b1, b2] (thick line) for the discrim�
ination of the hypotheses T0 = 20 and TA = 40. 

Table 1. Expectations of the order statistics

m = 2 m = 3 m = 4

Tmin T/2 T/3 T/4

Tmax

Length T

3
2
��T 11

6
����T 25

12
����T

3
2
��T 11

6
����T
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Bearing in mind that among all functions which
could be taken as estimator the best is the mean, let us
study under what conditions the mean Tt of a sample
from [t1, t2] will be close to T?

We can use the fact that (8) depends on t1, t2 so that
selecting the optimum t1, t2 (or only t2 because t1
is normally fixed) we have a chance to make Tt be
equal to T.

Writing an equation

T(exp(–t1/T)(t1/T + 1) 

– exp(–t2/T)(t2/T + 1))/exp(–t1/T – exp(–t2T)) = T.

and dividing the both parts by T and reducing the frac�
tion by exp(–t1/T) we shall get

(t1/T + 1) – exp(–(t2 – t1)/T)(t2/T + 1)) 

= 1 –exp(–(t2 – t1)/T)

from which the needed condition follows as

(10)

If t1 is fixed and t2 satisfies (10) the mean of the
sample in [t1, t2] is a unbiased consistent estimator of
the T parameter.

The Eq. (8) can be also used as moment estimator
of T, i.e. substituting the sample mean for Tt in (8) and
solving it with respect to T, we shall get an estimate of
T. The accuracy of this estimate can be evaluated by
expanding (8) into linear terms of T, and deriving T
from it as function of Tt. However, the success of this
method requires a large statistics.

11. CONCLUSIONS

It has been shown that unlike the normal and Pois�
son distributions the exponential one is very intolerant

t2/t1( )ln t2 t1–( )/T.=

to the low statistics (1–4 events) so that the more or
less exact parameter estimation and reliable statistical
tests strictly require the optimized techniques. As
such, for both the parameter (mean) estimation and
the statistical tests a concept of a confidence interval is
formulated based on the order statistics which, on the
one hand, provides their clear and natural interpreta�
tion, and, on the other hand, means a good compro�
mise between the criteria: “the shortest interval
length”—“the largest size of the covering probability.”

12. TESTING

We can use the above�described method to the
data, published in [3] in order to see to what extent the
confidence intervals reported there are optimum and
compare them with the results given by our method.

In the TASCA case the authors reported the fol�

lowing estimate of the 294117 half�life (in ms): 
the analysis used the 2 decay chains; in the DGFRS
case the estimates, based on the 3 chains, are as fol�

lows: 

It is very strange that these CIs are strongly asym�
metric on the right from the T1/2�point�The exponen�
tial distribution (as mentioned at the paper beginning)
is an avalanche of the events in the first time period
([0, T1/2])—one half of the total decay integral—then
one forth in the next [T1/2, 2T1/2], and so one. There�
fore, the events to the right from T1/2] are those of a
small and rapidly diminishing probability, and, cer�
tainly, first of all, a CI should cover events from the
left side.

The order statistics for m = 2 are [25.5, 76.5]ms.
The minimal CI for the probability 0.68 is [8, 65].

51 20–
+94

;

50 18–
+60

.

Table 2. T = 20

OCI (m = 2) OCI3 OCI4 UCI (m = 2) UCI3 UCI4

Prob “pro” 0.55 0.83 0.95 0.74 0.75 0.71

Ratio pro:contra 1.2 5.0 19.9 2.9 2.9 2.5

CI Length T 1.5T 1.835T 1.41T 1.41T 1.41T

Table 3. T = 80

OCI (m = 2) OCI3 OCI4 UCI (m = 2) UCI3 UCI4

Prob “pro” 0.54 0.83 0.95 0.75 0.72 0.71

Ratio pro:contra 1.2 5.0 18.4 2.9 2.5 2.4

CI Length T 1.5T 1.83T 1.41T 1.41T 1.41T
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Comparing the CI lengths 94 + 20 = 114ms and
65 ⎯ 8 = 57ms, we see that the TASCA CI is not opti�
mum—the same covering probability, but a much
longer length (almost twice).

The order statistics for m = 3 (DGFRS case) are
[17, 92]ms. The covering probability is about 0.83. The
minimal CI with the length 108 is [12, 120], which is
covered by the probability about 0.86. Here we see too
that the DGFRS CI is not optimum—not only its CI
length is longer, but also the covering probability is sig�
nificantly smaller compared with that of the OCI.
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