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1 1. INTRODUCTION

The classical Korteweg–de Vries (KdV) equation
and its generalizations model various physical systems,
including gravity waves, plasma waves and waves in
lattices [1]. In particular, the KdV equation arises in
the modeling of one�dimensional plane waves in cold
quasi�neutral collision�free plasma propagating along
the x�direction under the presence of a uniform mag�
netic field [2]. It appeared that, when the propagation
angle of the wave relative to the external magnetic field
becomes critical, the third�order (dispersion) term in
the model equation should be replaced by the fifth�
order one [3]. Namely, magneto�acoustic waves prop�
agating along this critical direction are modeled by the
simplest fifth�order KdV (fKdV) equation (called also
quintic KdV equation),

(1)

In [4] the Eq. (1) with μ = –1 was shown to describe
solitary waves in the nonlinear transmission line of a
LC ladder type.

Later Eq. (1) and its generalizations were studied in
a number of papers. Thus, an exact solitary wave solu�
tion of Eq. (1) in terms of Jacobi elliptic function cn
was found in [5, 6]. Pulsating multiplet solutions of
this equation were examined in [7]. Local conserva�
tion laws with the densities u, u2 and u3 + 3/2(uxx)

2

were indicated therein. Note that the fKdV equation is
not integrable by the inverse scattering transform
method in contrast to the classical KdV equation [8].
Lie symmetries and the corresponding reductions of
(1) to ordinary differential equations (ODEs) were
found in [9].

1 The article is published in the original.

ut uux μuxxxxx+ + 0, μ const.= =

In the last decades there is a great interest to vari�
able coefficient models that in many cases describe the
real world phenomena with more accuracy. Classifica�
tions of Lie symmetries are usual tasks in studies of
such models. This is due to the fact that Lie symme�
tries allows one not only to reduce a model PDE to a
PDE with fewer number of independent variables or to
an ODE but also to derive cases that are potentially
more interesting for applications [10].

An attempt of Lie symmetry classification of the
generalized fKdV equations with time dependent
coefficients, ut + unux + α(t)u + β(t)uxxxxx = 0, was
made in [11]. However, the results presented therein
are incorrect in general. In the present paper we per�
form the correct and complete group classification of
the class

(2)

where α and β are smooth functions of the variable t.
To be able to reduce the number of variable coeffi�
cients and to proceed with Lie symmetry analysis in an
optimal way, we at first find the admissible transforma�
tions [12] (called also allowed [13] or form�preserving
[14] ones) in class (2). Classifications of Lie symme�
tries and similarity reductions are presented in Sec�
tions 3 and 4, respectively.

2. ADMISSIBLE TRANSFORMATIONS

Roughly speaking an admissible transformation is a
triple consisting of two fixed equations from a class
and a point transformation linking these equations.
The set of admissible transformations of a class of DEs
possesses the groupoid structure with respect to the
standard composition of transformations [15]. More

ut uux α t( )u β t( )uxxxxx+ + + 0, β 0,≠=
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details and examples on finding and utilizing admissi�
ble transformations for fKdV�like equations as well as
definitions of different kinds of equivalence groups are
given in [16, 17].

To classify admissible transformations in class (2)
we suppose that an equation from (2) is connected
with an equation from the same class,

(3)

via a nondegenerate point transformation in the space
of variables (t, x, u). Without loss of generality the con�
sideration can be restricted to point transformations of
the special form

(4)

where T, Xi, and Ui, i = 0, 1, are arbitrary smooth func�
tions of their variables with TtX1U1 ≠ 0. This restriction
is true for any subclass of the class of evolution equa�
tions of the form ut = F(t)un + G(t, x, u, u1, …, un – 1),
with F ≠ 0, and  = 0, i = 1, …, n – 1. Here n ≥ 2,

un =  F and G are arbitrary smooth functions of

their variables [17]. We make the change of variables
(4) in (3) and further substitute ut = –uux – α(t)u –
β(t)uxxxxx to the obtained equation in order to confine
it to the manifold defined by (2) in the fifth�order jet
space with the independent variables (t, x) and the
dependent variable u. Splitting the obtained identity
with respect to the derivatives of u leads to the deter�
mining equations for the functions T, X1, X0, U1 and
U0. After certain simplifications the equations become

 

We solve these equations and get the following assertion.

Theorem 1. The generalized extended equivalence

group  of class (2) is formed by the transformations

ũ t̃ ũũx̃ α̃ t̃( )ũ β̃ t̃( )ũx̃x̃x̃ x̃ x̃+ + + 0,=

t̃ T t( ), x̃ X1 t( )x X0 t( ),+= =

ũ U1 t x,( )u U0 t x,( ),+=

Guiun 1–

∂nu

xn∂
������,

β̃Tt β X1( )
5
, Ux

1
0, U1Tt X1

,= = =

U0Tt Xt
1x Xt

0
,+=

Ut
0 α̃TtU

0
,–=

Ut
1X1 αU1X1– U1Ux

0Tt α̃U1TtX
1+ + 0.=

Ĝ
~

t̃ T t( ), x̃ x δ1+( )X1 δ2,+= =

ũ 1
Tt

���� X1u Xt
1 x δ1+( )+( ),=

α̃ t̃( ) 1
Tt

���� α t( ) 2
Xt

1

X1
����–

Ttt

Tt

�����+
⎝ ⎠
⎜ ⎟
⎛ ⎞

, β̃ t̃( ) X1( )
5

Tt

����������β t( ),= =

where X1 = (δ3∫ dt + δ4)
–1, δj, j = 1, …, 4, are

arbitrary constants with (δ3, δ4) ≠ (0, 0) and T = T(t) is
a smooth function with Tt ≠ 0.

The entire set of admissible transformations of class (2)

is generated by the transformations from the group .
Using this theorem we can formulate a criterion of

reducibility of variable coefficient fKdV equations to
constant coefficient ones.

Theorem 2. A variable coefficient equation from
class (2) is reducible to the constant coefficient fKdV
Eq. (1) if and only if its coefficients α and β are related
by the formula

(5)

where c1 and c2 are arbitrary constants with (c1, c2) ≠ (0, 0).
Using the equivalence transformation

(6)

from the group  we can set the arbitrary element α
to the zero value. Indeed, this transformation maps
class (2) to its subclass with  = 0. The arbitrary ele�

ment  of a mapped equation is expressed in terms of

α and β as  = e∫α(t)dtβ. Without loss of generality we
can restrict ourselves to the investigation of the class

(7)

since all results on symmetries, classical solutions,
conservation laws and other related objects for equa�
tions from class (2) can be found using the similar
results obtained for equations from class (7).

We derive equivalence transformations in class (7)
setting  = α = 0 in transformations presented in
Theorem 1.

Corollary 1. The usual equivalence group  of
class (7) consists of the transformations

where a, b, c, d, e0, e1 and e2 are arbitrary constants with
Δ = ad – bc ≠ 0 and e2 ≠ 0, the tuple (a, b, c, d, e0, e1, e2)
is defined up to a nonzero multiplier and hence without
loss of generality we can assume that Δ = ±1.

The entire set of admissible transformations of class (7)

is generated by the transformations from the group 

e–∫α t( )dt

Ĝ
~

β e ∫α t( )dt– c1 e ∫α t( )dt–
dt∫ c2

l��+⎝ ⎠
⎛ ⎞

3

,=

t̂ e ∫α t( )dt–
dt, x̂ x, û e∫α t( )dtu= =∫=

Ĝ
~

α̂

β̂

β̂

ut uux β t( )uxxxxx+ + 0=

α̃

Gα  = 0
~

t̃ at b+
ct d+
�����������, x̃

e2x e1t e0+ +
ct d+

�������������������������,= =

ũ
e2 ct d+( )u e2cx– e0c– e1d+

Δ
����������������������������������������������������������,=

β̃ t̃( )
e2

5

ct d+( )3
�����������������β t( )

Δ
��������,=

Gα 0=
~
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The transformation components for t, x and u coin�
cide with those obtained for the class of Burgers equa�
tions ut + uux + β(t)uxx = 0 [18] and the class of KdV
equations ut + uux + β(t)uxxx = 0 [19].

Corollary 2. A variable coefficient equation from
class (7) is reducible to the constant coefficient fKdV
Eq. (1) if and only if β = (c1t + c2)

3, where c1 and c2 are
arbitrary constants with (c1, c2) ≠ (0, 0).

3. LIE SYMMETRIES

To perform the group classification of class (7) we
use the classical technique [21]. Namely, we look for
Lie symmetry operators of the form Q = τ(t, x, u)∂t +
ξ(t, x, u)∂x + η(t, x, u)∂u that generate one�parametric
Lie groups of transformations leaving equations from
class (7) invariant. The Lie invariance criterion is writ�
ten as

(8)

where Q(5) is the fifth prolongation of the operator Q
[20, 21]. Equation (8) leads to the determining equa�
tions for the coefficients τ, ξ and η, the simplest of
which result in

where τ, ξ, η1 and η0 are arbitrary smooth functions of
their variables. The rest of the determining equations
have the form

The latter two equations can be split with respect to the
variable u. After splitting we solve those equations that

Q 5( ) ut uux β t( )uxxxxx+ +( )
ut –uux β t( )uxxxxx–=

0,=

τ τ t( ), ξ ξ t x,( ), η η1 t x,( )u η0 t x,( ),+= = =

τβt 5ξx τt–( )β, ηx
1 2ξxx, ηxx

1 ξxxx,= = =

2ηxxx
1 ξxxxx,=

ηx
1u2 ηx

0 ηt
1 ηxxxxx

0 β+ +( )u ηt
0 ηxxxxx

0 β+ + + 0,=

τt ξx– nη1+( )u 5ηxxxx
1 ξxxxxx–( )β ξt– η0+ + 0.=

do not involve arbitrary element β and get the general
form of the infinitesimal generator,

where ci, i = 0, …, 5, are arbitrary constants. The single
classifying equation is

If the arbitrary element β varies, then we can split the
latter equation with respect to β and its derivative βt.
As a result, we obtain that c0 = c1 = c2 = c3 = 0 and the
kernel Aker of the maximal Lie invariance algebras of
equations from class (7) coincides with the two�
dimensional algebra 〈∂x, t∂x + ∂u〉. To exhaustively
describe cases of Lie symmetry extension we should
integrate the classifying equation with respect to β up

to �equivalence. Since the procedure is quite
similar to that of the Lie symmetry classification for
KdV equations, ut + uux + β(t)uxxx = 0, we omit details
of calculations and refer the interested reader to [19].
The following assertion is true.

Theorem 3. The kernel of the maximal Lie invari�
ance algebras of equations from class (7) is the two�
dimensional Abelian algebra Aker = 〈∂x, t∂x + ∂u〉. All

possible �inequivalent cases of extension of the
maximal Lie invariance algebras are exhausted by
Cases 1–4 of Table 1.

Remark 1. A group classification list for class (2) up

to �equivalence coincides with the list presented in
Table 1.

Remark 2. An equation of the form (2) admits a
four�dimensional Lie symmetry algebra if and only if
it is point�equivalent to the constant coefficient fKdV
Eq. (1).

In Table 2 we present also the complete list of Lie
symmetry extensions for class (2), where arbitrary ele�

Q c2t2 c1t c0+ +( )∂t c2t c3+( )x c4t c5+ +( )∂x+=

+ c3 c1– c2t–( )u c2x c4+ +( )∂u,

c2t2 c1t c0+ +( )βt 3c2t c1– 5c3+( )β.=

Gα 0=
~

Gα 0=
~

Ĝ
~

Table 1. The group classification of the class ut + uux + β(t)uxxxxx = 0

no. β(t) Basis of Amax

0 ∀

1 tρ

2 et

3

4 1

Here ρ and ν are real constants, ρ � 0. Up to �equivalence we can assume that ρ ≤ 3/2, ν ≥ 0.

∂x t∂x ∂u+,

∂x t∂x ∂u 5t∂t ρ 1+( )x∂x ρ 4–( )u∂u+ +,+,

∂x t∂x ∂u+ 5∂t x∂x u∂u+ +, ,

t
2

1+( )

3
2
��

e
5ν tarctan ∂x t∂x ∂u t

2
1+( )∂t t ν+( )x∂x ν t–( )u x+( )∂u+ +,+,

∂x t∂x ∂u+ ∂t 5t∂t x∂x 4u∂u–+, , ,

Gα 0=
~
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ments are not simplified by point transformations. This
is achieved using the equivalence�based approach [22].

Cases presented in Table 2 give all Eqs. (2) for
which the classical method of Lie reduction can be
effectively used.

4. LIE SYMMETRY REDUCTIONS

Lie symmetries provide one with the powerful tool
for finding solutions of nonlinear PDEs reducing them
to PDEs with fewer number of independent variables
or even to ODEs. If a (1+1)�dimensional PDE admits
a Lie symmetry operator, Q = τ∂t + ξ∂x + η∂u, then the
ansatz reducing this PDE to an ODE is found as a
solution of the invariant surface condition Q[u] :=
τut + ξux – η = 0 [20, 21]. In practice, one has to solve
the corresponding characteristic system dt/τ = dx/ξ =
du/η. To get inequivalent reductions one should use
subalgebras from an optimal system (see Section 3.3
in [20]).

We have constructed optimal systems of one�
dimensional subalgebras for all the maximal Lie

invariance algebras presented in Table 1. The results
are summarized in Table 3.

The reductions with respect to the subalgebra �
lead to constant solutions only. The reduction with
respect to the subalgebra �4.3 is not presented since it
coincides with that performed using �1.1 for ρ = 0.
Other reductions are listed in Table 4.

Solving the first�order reduced equation from
Table 4 and subsequently applying to it transforma�
tion (6) we get a “degenerate” solution of Eq. (2),

that is valid for any smooth function α. Here a and b
are arbitrary constants.

Using equivalence transformations it is possible to
construct an exact solution for the Eqs. (2) that are
reducible to their constant coefficient counterparts,
i.e., whose coefficients are related by (5). We take the
known solution in terms of the Jacobi elliptic function
cn from [6] for Eq. (1) and get the exact solution

u x b+

e–∫α t( )dt
dt∫ a+

�����������������������������e–∫α t( )dt
,=

u

105
16

�������acn
4 2

4
�����a

1
4
�� x d+

Z
��������� 21

8
����a e–∫α t( )dt

Z2
��������������dt∫–⎝ ⎠

⎛ ⎞ b; 2
2

�����+
⎝ ⎠
⎜ ⎟
⎛ ⎞

c1 x d+( )+

e∫α t( )dtZ
�������������������������������������������������������������������������������������������������������������������������=

Table 2. The group classification of the class ut + uux + α(t)u + β(t)uxxxxx = 0 using no equivalence

no. β(t) Basis of Amax

0 ∀

1

2

3

4a λTt

4b

Here a, b, c, d, λ, ν, and ρ are arbitrary constants with λ ≠ 0 and ρ ≠ 0, 3, Δ = ad – bc ≠ 0; � =  The function

α(t) is arbitrary in all cases, T = ∫e–∫α(t)dtdt.

∂x T∂x Tt∂u+,

λTt aT b+( )ρ cT d+( )3 ρ–
∂x T∂x Tt∂u+ 5Tt

1–
aT b+( ) cT d+( )∂t 5acT ad ρ 1+( ) bc 4 ρ–( )+ ]x∂x+[+, ,

+ 5acxTt 5acT 5αTt
1–

aT b+( ) cT d+( ) bc ρ 1+( ) ad 4 ρ–( )+ + ]u )∂u+[–(

λTt cT d+( )3 aT b+
cT d+
�������������⎝ ⎠
⎛ ⎞exp

∂x T∂x Tt∂u+ 5Tt
1–

cT d+( )2∂t 5c cT d+( ) Δ)x∂x+(+, ,

+ 5c
2
xTt Δ 5 cT d+( ) c α cT d+( )Tt

1–+( )–( )u+[ ]∂u

λTte
5ν  arctan aT b+

cT d+
�������������⎝ ⎠
⎛ ⎞

�3

∂x T∂x Tt∂u+ Tt
1– �2

∂t a aT b+( ) c cT d+( ) νΔ ]x∂x+ +[+, ,

+ a
2

c
2+( )xTt a aT b+( ) c cT d+( ) νΔ αTt

1– �2
+–+( )u–[ ]∂u

∂x T∂x Tt∂u+ Tt
1– ∂t αu∂u–( ) 5TTt

1– ∂t x∂x 4 5TTt
1– α+( )u∂u–+,, ,

Tt cT d+( )3
∂x T∂x Tt∂u+ 5Tt

1–
cT d+( )∂t 4cx∂x (c– 5Tt

1–
cT d+( )α)u∂u,+ +, ,

Tt
1–

cT d+( )2∂t c cT d+( )x∂x c
2
xTt cT d+( ) c Tt

1–
cT d+( )α+( )u–[ ]∂u++

aT b+( )
2

cT d+( )
2
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for the variable coefficient fKdV equation,

where Z = c1∫ dt + c2, a is a positive constant, c1,
c2, b and d are arbitrary constants with (c1, c2) ≠ (0, 0).

CONCLUSIONS

In the present paper, the group classification prob�
lem for class (2) of variable coefficient fKdV equa�
tions, which appear in various gravity and plasma wave
models, is completely solved. The use of the general�

ized extended equivalence group  has allowed us to

ut uux α t( )u e–∫α t( )dtZ3uxxxxx–+ + 0,=

e–∫α t( )dt

Ĝ
~

present the classification list in a rather simple form
(Table 1). For the sake of convenience in further appli�
cations, we also write down the classification list
extended by equivalence transformations (Table 2).
The Lie symmetry algebra of an equation from
class (2) is of maximal dimension (which is equal to
four) if this equation has constant coefficients or is
point�equivalent to one with constant coefficients.

One�dimensional subalgebras of the Lie symmetry
algebras admitted by equations from class (2) are clas�
sified in Table 3 and all inequivalent reductions with
respect to such subalgebras are summarized in Table 4.
Performed reductions can be used for the construction
of exact and/or numerical solutions. Examples of such

Table 3. Optimal systems of one�dimensional subalgebras of Amax presented in Table 1

Case Optimal system

0

1ρ ≠ –1, 4

1ρ = –1

2

3

4

Here a is a real constant, σ ∈ {–1, 0, 1}. Up to �equivalence we can assume that ρ ≤ 3/2, ν ≥ 0.

� ∂x〈 〉 , �
a

t a+( )∂x ∂u+〈 〉= =

� ∂x〈 〉 , �
σ

t σ+( )∂x ∂u+〈 〉 , �1.1 5t∂t ρ 1+( )x∂x ρ 4–( )u∂u+ +〈 〉= = =

� ∂x〈 〉 , �
σ

t σ+( )∂x ∂u+〈 〉 , �1.2
a

t∂t a∂x u∂u–+〈 〉= = =

� ∂x〈 〉 , �
0

t∂x ∂u+〈 〉 , �2 5∂t x∂x u∂u+ +〈 〉= = =

� ∂x〈 〉 , �3 t
2

1+( )∂t t ν+( )x∂x x ν t–( )u+( )∂u+ +〈 〉= =

� ∂x〈 〉 , �4.1 ∂t〈 〉 , �4.2
σ

σ∂t t∂x ∂u+ +〈 〉 , �4.3 5t∂t x∂x 4u∂u–+〈 〉= = = =

Gα 0=
~

Table 4. Similarity reductions of the equations ut + uux + β(t)uxxxxx = 0

Case ω Ansatz, u = Reduced ODE

0 t

1ρ ≠ –1, 4

1ρ = –1

2

3

4.1 x

4.2

Here a is an arbitrary constant.

�

�
a ϕ ω( ) x

t a+
��������+ ω a+( )ϕ ' ϕ+ 0=

�1.1 xt

ρ 1+
5

����������–

t

ρ 4–
5

����������

ϕ ω( )
ϕ ''''' ϕ ρ 1+

5
����������ω–⎝ ⎠

⎛ ⎞ ϕ ' ρ 4–
5

����������ϕ+ + 0=

�1.2
a x a tln– t

1– ϕ ω( ) ϕ ''''' ϕ a–( )ϕ ' ϕ–+ 0=

�2 xe

1
5
�� t–

e

1
5
�� t

ϕ ω( )
ϕ ''''' ϕ 1

5
��ω–⎝ ⎠

⎛ ⎞ ϕ ' 1
5
��ϕ+ + 0=

�3
xe

ν arctan t–

t
2

1+
������������������� e

ν arctan t

t
2

1+
���������������ϕ ω( ) xt

t
2

1+
����������+ ϕ ''''' ϕ νω–( )ϕ ' νϕ ω+ + + 0=

�4.1 ϕ ω( ) ϕ ''''' ϕϕ '+ 0=

�4.2
σ x t

2

2
���± ϕ ω( ) t+− ϕ ''''' ϕϕ ' 1+−+ 0=
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constructions were given in [16] for the generalized
Kawahara equations. Two simple solutions are also
constructed in the present paper.
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