Cluster Self-Organization of Intermetallic Systems: New Two-Layer Cluster-Precursor $K46 = 0 @8(Ca_2Hg_6)@38(Hg_6 + CaHg_6)_2(Ca_6Hg_6)$ for Self-Assembly of the Crystal Structure of $Ca_{11}Hg_{54}-hP65$

V. Ya. Shevchenko^{*a*, *}, V. A. Blatov^{*b*}, and G. D. Il'yushin^{*b*, *c*}

^aGrebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg, 199034 Russia ^bInternational Research Center for Theoretical Materials Science, Samara State Technical University, Samara, 443100 Russia ^cFederal Research Center "Crystallography and Photonics," Moscow, 119333 Russia *e-mail: shevchenko@isc.nw.ru

Received July 11, 2019; revised October 4, 2019; accepted October 8, 2019

Abstract—A combinatory topological analysis and simulation of the self-assembly of the crystal structure of $Ca_{11}Hg_{54}$ —*hP*65 (a = b = 17.114 Å, c = 10.442 Å, hexagonal group *P*-6) are performed by computer methods (ToposPro software package). A total of 184 variants of the cluster representation of the 3D atomic lattice with a number of structural units of 3–7 are established. The polyhedral clusters K8 = 0@Ca₂Hg₆, which appeared to be hexagonal bipyramids, the polyhedral clusters K11 = 0@Ca₃Hg₈, and the polyhedral clusters with the central Hg atom K12 = Hg(Ca₃Hg₈) are determined. The centers of the Ca₂Hg₆, 0@Ca₃Hg₈ and Hg(Ca₃Hg8) clusters occupied the highly symmetric positions 1*c*, 1*b*, and 1*f* with a –6 symmetry. The precursor clusters Ca₂Hg₆ represent templates on the surface of which atomic shells of 38 atoms are formed. The composition of the two-layered template cluster K46 is 0@8(Ca₂Hg₆)@38(Hg₆ + CaHg₆)₂(Ca₆Hg₆). The symmetry and topological code for the self-assembly processes of the 3D structure from the nanoclusters-precursors K46 with participation of the polyhedral clusters 0@Ca₃Hg₈ and Hg(Ca₃Hg₈) are simulated.

Keywords: intermetallide $Ca_{11}Hg_{54}-hP65$, self-assembly of crystal structure, polyhedral clusters K8 = Ca_2Hg_6 and K12 = Hg(Ca_3Hg_8), two-layered cluster K46 = $0@8(Ca_2Hg_6)@38(Hg_6 + CaHg_6)_2(Ca_6Hg_6)$ **DOI:** 10.1134/S1087659620010198

INTRODUCTION

The crystal chemistry family of double Hg intermetallides includess about 200 compounds [1]. The formation of Hg intermetallides was established in 45 *A*-Hg systems. The largest number of crystallochemically different intermetallides (eleven) was found in the binary system Ca-Hg, with a wide range of changes in the Hg : *A* atomic ratio from 11 to 0.33 (Table 1, [2–6]).

The crystal structures of six Hg-intermetallides were included in the crystal chemistry families of the most common types of crystal structures, with several hundred specimen each. Three Hg intermetallides belonged to the crystal chemistry families with more than forty species (Table 1). The authors of [7, 8] simulated the cluster self-assembly of widely spread types of crystal structures established for Hg intermetallides.

The most crystallochemically complex family of intermetallides $Ca_{11}Hg_{54}-hP65$ included two more compounds: $Sr_{11}Hg_{54}-hP65$ [5] and $Yb_{11}Hg_{54}-hP$ [9]. The crystal structure of the intermetallide $Ca_{11}Hg_{54}-hP65$ [5] with the spatial group *P*-6 (no. 174) and

V = 1492.7 Å³ was characterized by 18 crystallographically independent atoms with the Wyckoff sequence $l^6k^3f^4ihgfa$. For Hg atoms, a wide spectrum of coordination number (CN) values was established: 11 (5 atoms), 12 (8 atoms), and 13 (1 atom). Ca atoms exhibited the CN of 14 (1 atom), 15 (2 atoms), and 16 (1 atom).

In the present study, we performed the geometric and topological analysis of the crystal structure of the intermetallide $Ca_{11}Hg_{54}-hP65$ by the ToposPro software package [10]. The symmetry and topological code for the processes of self-assembly of the 3D structure from precursor clusters K46 were simulated in the following form: primary chain \rightarrow microlayer \rightarrow microframework.

The present study represents a followup to the works [7, 8, 11-16] in the field of simulation of the processes of self-assembly of systems on the suprapolyhedral scale and the geometrical and topological analysis of crystal structures by advanced computer methods.

Compound	Hg/Ca	Structure type	No of compounds [1]	Space group	Class Pearson	Cell parameters, Å	V, Å ³
Ca ₃ Hg [2]	0.33	Fe ₃ C	194	Pnma (62)	oP16	8.161, 10.150, 6.828	565.6
Ca ₃ Hg [3]	0.33	Cu ₃ Au	1827	<i>Pm</i> -3 <i>m</i> (221)	CP4	4.920, 4.920, 4.920	119.1
Ca ₂ Hg [2]	0.5	Co ₂ Si	43	<i>Pnma</i> (62)	OP12	7.860, 4.890, 9.870	379.4
Ca ₅ Hg ₃ [2]	0.6	Cr ₅ B ₃	183	<i>I</i> 4/ <i>mcm</i> (140)	tI32	8.189, 8.189, 14.701	985.8
Ca ₃ Hg ₂ [2]	0.66	U ₃ Si ₂	142	P4/mbm (127)	tP10	8.476, 8.476, 4.197	301.5
$Ca_{2}Hg_{2}[2]$	1	CsCl	1797	<i>Pm</i> -3 <i>m</i> (221)	CP2.	3.759, 3.759, 3.759	53.1
CaHg ₂ [2]	2	Alb ₂	43	<i>P</i> -3 <i>m</i> 1(164)	hP3	4.894, 4.894, 3.571	74.1
Ca ₄ Hg ₉ [4]	2.25	Cu ₉ Al ₄	47	<i>P</i> -43 <i>m</i> (215)	cP52	11.130, 11.130, 11.130	1378.8
CaHg ₃ [2]	3	Mg ₃ Cd	356	<i>P</i> 6 ₃ / <i>mmc</i> (194)	hP8	6.635, 6.635, 5.020	191.4
Ca ₁₁ Hg ₅₄ [5]	4.90	Ca ₁₁ Hg ₅₄	3	<i>P</i> -6 (174)	hP65	13.389, 13.389, 9.615	1492.7
CaHg ₁₁ [6]	11	BaHg ₁₁	13	<i>Pm</i> -3 <i>m</i> (221)	cP36	9.600, 9.600, 9.600	884.7

Table 1. Crystallographic data

COMPUTER ANALYSIS METHODS

The geometrical and topological analysis was performed by means of the ToposPro software package [10], which made it possible to conduct a multipurpose study of the crystal structure automatically, using the representation of structures in the form of "folded graphs" (factor graphs). The data on the functional role of atoms in the formation of a crystalline structure were obtained by calculating coordination sequences, i.e., sets of numbers $\{N_k\}$, where N_k was the number of atoms in the *k*th coordination sphere of a given atom.

 Table 2.
 Local surrounding of Ca and Hg atoms and values of coordination sequences

Atom	Local	Coordination sequences				
Atom	surrounding	N_1	N_2	N_3	N_4	N_5
CA1	14Hg	14	47	106	189	312
Ca2	15HG	15	48	104	190	312
CA3	15HG	15	47	105	200	310
CA4	1Ca + 15Hg	16	46	104	193	310
Hg2	4Ca + 8Hg	12	47	106	189	294
Hg3	3Ca + 8Hg	11	46	104	187	290
Hg4	2Ca + 11Hg	13	47	108	188	297
Hg5	3Ca + 9Hg	12	47	108	189	302
Hg6	3Ca + 9Hg	12	47	103	190	299
Hg7	4Ca + 8Hg	12	48	104	192	302
Hg8	4Ca + 8Hg	12	47	109	193	309
Hg9	1Ca + 11Hg	12	46	106	192	303
HG10	3Ca + 9Hg	12	46	105	194	316
Hg11	3Ca + 9Hg	12	44	109	194	313
Hg12	3Ca + 8Hg	11	44	101	188	302
Hg13	3Ca + 8Hg	11	47	107	191	299
Hg14	3Ca + 8Hg	11	44	107	182	305
Hg15	11Hg	11	47	107	188	302

The obtained values of the coordination sequences of atoms in the 3D lattices are provided in Table 2, in which the number of neighboring atoms in the most proximate surrounding, i.e., in the first coordination sphere of the atom, was separated. All atoms were characterized by different sets of the coordination sequences $\{N_k\}$; therefore, all the atoms were topologically (and functionally) different.

The algorithm for automatic decomposition of a structure of any intermetallide, represented in the form of a folded graph, onto cluster units was based on the following principles: a structure was formed as a result of self-assembly from precursor clusters. Here, the precursor clusters formed a structure framework, voids in which were filled with spacer clusters (consisting of a small number of atoms), the precursor nanoclusters did not have shared internal atoms; however, they could have shared atoms on the surface, the precursor clusters occupied highly symmetric positions and the set of precursor nanoclusters and spacer clusters included all atoms of the structure.

The algorithm was implemented by the ToposPro software package [10].

SELF-ASSEMBLY OF THE CRYSTAL STRUCTURE OF Ca₁₁Hg₅₄-*hP*65

The method of simulation of the crystal structure that we used was based on determining the hierarchical sequence of its self-assembly in the crystallographic space [11]. At the first level of the system selfassembly, the mechanism of formation of a primary chain of the structure from 0-level nanoclusters formed at the template stage of the chemical evolution of the system is determined, then the mechanism of self-assembly from the layer chain (2nd level), and, thereafter, from the layer of three-dimensional framework (3rd level).

Fig. 1. Polyhedral clusters.

Fig. 2. Cluster K46 (two projections).

Crystallographic data. Parameters of the hexagonal cell: a = b = 13.389, c = 9.615 Å.

Space group *P*-6 (no. 174) with elements of the point symmetry: g = -6 (1*a*, 1*b*, 1*c*, 1*d*, 1*e*, 1*f*), 3 (2*g*, 2*h*, 2*i*), *m* (3*j*, 3*k*). The order of the group was 6.

Polyhedral clusters K8, K11 and K12. 184 variants of the cluster representation of the 3D atomic lattice with a number of structural units from 3 to 7 was established.

The polyhedral clusters $K8 = 0@Ca_2Hg_6$ which appeared to be hexagonal bipyramids, the polyhedral

Fig. 3. Framework structure (two projections).

clusters $K11 = 0@Ca_3Hg_8$ and the polyhedral clusters with the central Hg atom $K12 = Hg (Ca_3Hg_8)$ were determined (Fig. 1).

The centers of the clusters Ca_2Hg_6 , $0@Ca_3Hg_8$ and $Hg(Ca_3Hg_8)$ occupied the most highly symmetric positions 1c, 1b, and 1f with a -6 symmetry.

Suprapolyhedral precursor clusters K46. The clusters Ca_2Hg_6 represented templates, on the surface of which

atomic shells were formed of 38 atoms (Fig. 2). The composition of the two-layered cluster K46 was $0@8(Ca_2Hg_6)@38(Hg_6 + CaHg_6)_2(Ca_6Hg_6)$.

Self-assembly of the crystalline structure. Primary chain. The formation of primary chains S_3^1 occured upon binding of K46 clusters by triple Hg₃ rings towards the direction [001]. The distance between the

centers of the K46 in the primary chain determined the value of the translation vector c = 9.818 Å.

2D layer. The layer S_3^2 was formed upon binding of the

primary chains S_3^1 towards the direction [100] (Fig. 3). A distance between the axes of the primary chains determined the value of the translation vector a = 13.602 Å. The voids in the framework were occupied by the polyhedral clusters $0@Ca_3Hg_8$ and Hg(Ca₃Hg₈) and the spacer Hg(14) atoms (Fig. 3).

Self-assembly of the framework. The 3D framework

structure S_3^3 was formed upon binding of the 2D layers (with a shift) towards the direction [010] (Fig. 3). In the 3D framework, the distance between the equivalent 2D layers determined the value of the vector b =13.602 Å.

CONCLUSIONS

The combinatory-topological analysis and simulation of cluster self-assembly of the $Ca_{11}Hg_{54}-hP65$ crystal structure have been performed.

The polyhedral clusters $K8 = 0@Ca_2Hg_6$, which had appeared to be hexagonal bipyramids, the polyhedral clusters $K11 = 0@Ca_3Hg_8$, and the polyhedral clusters with the central Hg atom $K12 = Hg(Ca_3Hg_8)$ have been determined.

The clusters Ca_2Hg_6 represented templates, on the surface of which atomic shells of 38 atoms have been formed. The composition of the two-layered cluster K46 was $0@8(Ca_2Hg_6)@38(Hg_6 + {}_6)_2(Ca_6Hg_6)$.

The symmetry and topological code of the processes of self-assembly of the 3D structures from K46 precursor nanoclusters in the form primary chain \rightarrow layer \rightarrow framework have been simulated. The voids between the primary chains have been occupied by the polyhedral clusters 0@Ca₃Hg₈ and Hg(Ca₃Hg₈), as well as by the Hg spacer atoms.

FUNDING

This work was carried put with the support of the Russian Foundation for Basic Research (project no. 19-02-00636) and the Ministry of Science and Higher Education as a part of the State Order of the Russian Federal Research Center for Crystallography and Photonics.

REFERENCES

- 1. Villars, P. and Cenzual, K., *Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds* (*PCDIC*), Materials Park, OH: ASM Int., 2010.
- 2. Bruzzone, G. and Merlo, F., The calcium-mercury system, *J. Less-Common Met.*, 1973, vol. 32, pp. 237–241.
- Cenzual, K., Gelato, L.M., Penzo, M., and Parthe, E., Inorganic structure types with revised space groups. I, *Acta Crystallogr., Sect. B: Struct. Sci.*, 1991, vol. 47, pp. 433–439.

- Puselj, M. and Ban, Z., New ternary gamma-brass phases in the systems Ca-M_{IB(IIB)}-Hg, Z. Naturforsch., B: Anorg. Chem., Org. Chem., 1980, vol. 35, pp. 1594–1595.
- Tkachuk, A.V. and Mar, A., Alkaline-earth metal mercury intermetallics A_(11-x)Hg_(54+x) (A = Ca, Sr), *Inorg. Chem.*, 2008, vol. 47, no. 4, pp. 1313–1318.
- Puselj, M. and Ban, Z., Contribution to knowledge about the mercury–calcium system, *Croat. Chem. Acta*, 1978, vol. 51, no. 1, pp. 75–79.
- Ilyushin, G.D., Modeling of self-organization processes in crystal-forming systems: Symmetry and topology code for the cluster self-assembly of crystal structures of intermetallic compounds, *Russ. J. Inorg. Chem.*, 2017, vol. 62, no. 13, pp. 1730–1769.
- Ilyushin, G.D., Modeling of the self-orinnization processes in crystal-forming systems. Tetrahedral metal clusters and the self-assembly of crystal structures of intermetallic compounds, *Crystallogr. Rep.*, 2017, vol. 62, no. 5, pp. 670–683.
- Tambornino, F. and Hoch, C., The simplest representative of a complex series: The Hg-rich amalgam Yb₁₁Hg₅₄, Z. Kristallogr., 2017, vol. 232, pp. 557–565.
- Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package topospro, *Cryst. Growth Des.*, 2014, vol. 14, no. 7, pp. 3576–3585. https://topospro.com/.
- 11. Ilyushin, G.D., *Modelirovanie protsessov samoorganizatsii v kristalloobrazuyushchikh sistemakh* (Modeling of Self-Organization Processes in Crystal-Forming Systems), Moscow: Editorial URSS, 2003.
- Blatov, V.A., Ilyushin, G.D., and Proserpio, D.M., Nanocluster model of intermetallic compounds with giant unit cells: β,β'-Mg₂Al₃ polymorphs, *Inorg. Chem.*, 2010, vol. 49, no. 4, pp. 1811–1818.
- Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Symmetry and topology codes of cluster self-assembly for icosahedral structures of the NaZn₁₃-*cF*112 and TRB₆₆-*cF*1944 family, *Glass Phys. Chem.*, 2015, vol. 41, no. 4, pp. 341–351.
- Ilyushin, G.D., The crystal chemistry of lithium intermetallic compounds: A survey, *Russ. J. Inorg. Chem.*, 2018, vol. 63, no. 14, pp. 1786–1799.
- Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Modeling the processes of self-organization in crystalforming systems: New two-layer clusters—precursors 0@(Na₂Cd₆)@(Na₁₂Cd₂₆) and 0@(Na₃Cd₆)@(Na₆Cd₃₅) for the self-assembly of the Na₂₆Cd₁₄₁—*hP*168 crystal structure, *Glass Phys. Chem.*, 2019, vol. 45, no. 4, pp. 311–317.
- Ilyushin, G.D., Symmetry and topology code of the cluster self-assembly of intermetallic compounds A^[16]₂ B^[12]₄ of the Friauf Families Mg₂Cu₄ and Mg₂Zn₄, *Crystallogr. Rep.*, 2018, vol. 63, pp. 543–552.

Translated by D. Marinin