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Abstract—Three-component condensations of ethyl acetoacetate with 1,3-thiazol-2-amine and aromatic 
aldehydes in isopropyl alcohol at 20°C under ultrasonic activation lead to the formation of ethyl 5-aryl-7-
methyl-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylates, ethyl 5-aryl-7-hydroxy-7-methyl-6,7-dihydro-
5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylates, or ethyl 2-hydroxy-2-methyl-2H-chromene-3-carboxylate, 
depending on the position and nature of substituents in the aldehyde component. The structure of the isolated 
compounds was determined by one- and two-dimensional NMR and IR spectroscopy, and a plausible 
mechanism of their formation was proposed.
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Thiazolopyrimidines are heterocyclic analogs of 
purine bases, and they exhibit a broad spectrum of 
pharmacological activity [1–6], which stimulates 
studies of the synthesis of new compounds of this 
series, including potentially biologically active ones. 
A modern synthetic approach to thiazolopyrimidine 
derivatives is based on multicomponent sonochemical 
reactions in accordance with the “green chemistry” 
principles such as environmental safety, atom economy, 
and efficiency. Three-component syntheses of aryl-
substituted thiazolopyrimidinecarboxylates, including 
those carried out under ultrasonic irradiation, have 
been reported in [7–9]. However, the effect of substit-
uents in the aromatic ring of the aldehyde component 
on the reaction course was not studied.

Herein, we describe three-component condensations 
of aromatic aldehydes with ethyl acetoacetate and 
1,3-thiazol-2-amine. The series of aldehyde compo-
nents included unsubstituted benzaldehyde, 2-methyl-, 
2-nitro-, 2-hydroxy-, 2-chloro-, 4-chloro-, 4-bromo-, 
and 3-methoxy-4-hydroxybenzaldehydes, and 2-hy-
droxynaphthalene-1-carbaldehyde. The reactions were 
carried out with equimolar amounts of the reactants in 
isopropyl alcohol at 20°C under ultrasonic irradiation.

The position of substituents in the initial aldehyde 
was the crucial factor determining the reaction direc-
tion. The reactions with benzaldehyde, 2-chloro- and 
4-hydroxy-3-methoxybenzaldehydes, and 2-hydroxy-
naphthalene-1-carbaldehyde afforded ethyl 5-aryl-7-

methyl-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carbox-
ylates 1–4, 5-aryl-7-hydroxy-7-methyl-6,7-dihydro-
5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylates 5–8 
were obtained from 2-nitro-, 2-methyl-, 4-chloro-, and 
4-bromobenzaldehydes, and ethyl 2-hydroxy-2-methyl-
2H-chromene-3-carboxylate (9) was isolated in the 
condensation with salicylaldehyde (Scheme 1).

Compounds 1, 2, and 9 were reported previously 
[7–10]; the structure of the newly synthesized com-
pounds was determined on the basis of their elemental 
compositions, one- and two-dimensional NMR spectra, 
and IR spectra.

The 1H NMR spectra of thiazolopyrimidines 1–4 
showed signals of the 5-H proton (δ 6.13–6.15 ppm, s), 
ester ethoxy groups (δ 3.60–4.17 and 1.11–1.30 ppm 
for methylene and methyl protons, respectively), and 
7-methyl group (δ 1.75–2.28 ppm, s). The IR spectra of 
1–4 displayed absorption bands due to C=C (1650–
1723 cm–1), C=N (1500–1646 cm–1), C–H (CH3, 2869–
2951 cm–1), and C=O groups (1700–1790 cm–1).

In the 1H NMR spectra of 7-hydroxy analogs  5–8, 
the key signals were those of 5-H (δ 4.04–6.41 ppm, 
d), 6-H (δ 2.47–4.49 ppm, d), OH (δ 1.16–2.15 ppm, 
s), and CH2CH3 (δ 3.82–4.18 m and 0.90–1.13 ppm, t). 
In the spectra of 5 and 8, the 5-H, 6-H, OH, and OEt 
signals were doubled (see Experimental) due to the 
presence of two diastereoisomers. Molecules 5–8 
possess 3 asymmetric carbon atoms (C5, C6, C7), so 



RUSSIAN  JOURNAL  OF ORGANIC  CHEMISTRY   Vol.   56   No.   6   2020

991SYNTHESIS  AND  STRUCTURE  OF  THIAZOLOPYRIMIDINE  DERIVATIVES

that the existence of 8 optically active forms and 3 ra-
cemates is possible. Protons signals of 5 were unambig-
uously assigned to sp3- and sp2-carbon atoms on the 
basis of cross peaks in the 1H–13C HSQC spectrum.

Scheme 2 shows a plausible mechanism of the 
formation of compounds 1–9. Initial condensation of 
aromatic aldehyde with ethyl acetoacetate gives 
α,β-unsaturated ketone A which reacts with 1,3-thiazol-
2-amine to form hemiaminal B. Intramolecular cy-

clization of the latter involving the thiazole nitrogen 
atom leads to hydroxydihydrothiazolopyrimidine 
system 5–8; this process is favored by the presence of 
electron-withdrawing groups in the aldehyde moiety 
and steric effect of the methyl group. The formation of 
compounds 1–4 implies that the cyclization of B is 
preceded by dehydration. In the reaction with salicyl-
aldehyde, intermediate A undergoes cyclization to 
form pyran ring due to spatial proximity of the hydroxy 

Scheme 1.
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group in the ortho position of the benzene ring and 
carbonyl group of the acetyl fragment. Unlike salicyl-
aldehyde, the hydroxy group in 2-hydroxynaphthalene-
1-carbaldehyde is less nucleophilic because of more 
extended conjugation system, so that no cyclization of 
the corresponding intermediate A occurs.

In summary, we have synthesized new compounds 
of the thiazolo[3,2-a]pyrimidine series and studied the 
effect of the structure of the aldehyde component on 
the direction of their three-component condensation 
with ethyl acetoacetate and 1,3-thiazol-2-amine. Some 
of the synthesized compounds showed a pronounced 
cytotoxicity against HeLa cell line and are therefore 
promising for further studies [11].

EXPERIMENTAL

The IR spectra were recorded in KBr on an FSM 
1201 spectrometer with Fourier transform (Russia). 
The 1H and 1H–13C HSQC spectra were recorded on 
a Varian spectrometer (USA) at 400 MHz for 1H using 
CDCl3, acetone-d6, or DMSO-d6 as solvent and tetra-
methylsilane as internal standard. Elemental analysis 
was performed with a Vario MICRO cube automatic 
CHNS analyzer (Germany). The melting points were 
measured in open capillaries. The progress of reactions 
was monitored by TLC on Silufol UV-254 plates using 
hexane–ethyl acetate–chloroform (2:2:1) as eluent; 
spots were visualized under UV light or by treatment 
with iodine vapor. The reactions were carried out 
using a UZV-2.8 ultrsonic bath (Russia; ultrasound 
power 230 W, heating power 130 W, ultrasound 
frequency 35 kHz).

1,3-Thiazol-2-amine (chemically pure, ethyl aceto-
acetate (pure), benzaldehyde (pure), 2-methylbenzal de-
hyde (chemically pure), 2-nitrobenzaldehyde (chemi-
cally pure), 2-hydroxybenzaldehyde (chemically pure), 
2-chlorobenzaldehyde (chemically pure), 4-chloro-
benzaldehyde (chemically pure), 4-bromobenzaldehyde 
(chemically pure), 4-hydroxy-3-methoxybenzaldehyde 
(chemically pure), 2-hydroxynaphthalene-1-carbalde-
hyde (chemically pure), and isopropyl alcohol (pure) 
were commercial products.

Compounds 1–9 (general procedure). Equimolar 
amounts of ethyl acetoacetate, aromatic aldehyde, and 
1,3-thiazol-2-amine (3 mmol each) were dissolved in 
3 mL of isopropyl alcohol, and the solution was 
subjected to ultrasonic irradiation for 120–180 min at 
20°C. The solid product was filtered off, washed with 
isopropyl alcohol (3×20 mL), and dried in air.

Ethyl 7-methyl-5-phenyl-5H-[1,3]thiazolo[3,2-a]-
pyrimidine-6-carboxylate (1). Yield 0.15 g (34%), 
off-white crystals, mp 98–100°C [7–9].

Ethyl 5-(2-chlorophenyl)-7-methyl-5H-[1,3]thia-
zolo[3,2-a]pyrimidine-6-carboxylate (2). Yield 0.42 g 
(42%), yellow crystals, mp 105–107°C [8, 9].

Ethyl 5-(4-hydroxy-3-methoxyphenyl)-7-methyl-
5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carboxylate 
(3). Yield 0.49 g (48%), colorless crystals, mp 177–
179°C. IR spectrum, ν, cm–1: 3204 (OH), 2899 (CH3), 
2820 (OCH3), 1700 (C=O), 1654 (C=C), 1500 (C=N), 
1594–1606 (C=Carom). 1H NMR spectrum (acetone-d6), 
δ, ppm: 1.14 t (3H, CH3CH2, J = 12.0 Hz), 2.28 s (3H, 
CH3), 2.49 s (3H, OCH3), 3.91–4.03 m (2H, CH3CH2), 
6.13 s (1H, 5-H), 6.59–6.70 m (3H, Harom), 6.69 d (1H, 
2-H, J = 4.0 Hz), 7.18 d (1H, 3-H, J = 4.0 Hz), 9.04 s 
(1H, OH). Found, %: C 58.90; H 5.61; N 8.39. 
C17H18N2O4S. Calculated, %: C 58.96; H 5.20; N 8.09.

Ethyl 5-(2-hydroxynaphthalen-1-yl)-7-methyl-
5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carbox-
ylate (4).  Yield 0.52 g (47%), brown crystals, 
mp 123–126°C. IR spectrum, ν, cm–1: 3210 (OH), 
2899 (CH3), 1704 (C=O), 1650 (C=C), 1501 (C=N), 
1595–1610 (C=Carom). 1H NMR spectrum (acetone-d6), 
δ, ppm: 1.30 t (3H, CH3CH2, J = 12.0 Hz), 1.75 s (3H, 
CH3), 3.60–3.79 m (2H, CH2CH3), 6.15 s (1H, 5-H), 
6.49 d (1H, 2-H, J = 4.0 Hz), 7.10 d (1H, 3-H, J = 
4.0 Hz), 6.58–7.19 m (3H, Harom), 8.00 s (1H, OH). 
Found, %: C 65.75; H 4.65; N 7.17. C20H18N2O3S. 
Calculated, %: C 65.57; H 4.92; N 7.65.

Ethyl 7-hydroxy-7-methyl-5-(2-nitrophenyl)-6,7-
dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-car-
boxylate (5). Yield 0.28 g (26%), yellow crystals, 
mp 127–128°C. IR spectrum, ν, cm–1: 3100 (OH), 2900 
(CH3),  1700 (C=O), 1600 (C=C), 1590–1608 
(C=Carom), 1550–1575 (NO2, asym.), 1230–1290 (NO2, 
sym.). 1H NMR spectrum (CDCl3), δ, ppm: 1.03 t and 
1.13 t (3H, CH2CH3, J = 12.0 Hz), 1.16 s and 2.15 s 
(1H, OH), 2.44 s (3H, CH3), 4.02–4.08 m and 4.10–
4.20 m (2H, CH2CH3), 4.26 d and 4.45 d (1H, 6-H, J = 
8.0 Hz), 6.05 d and 6.33 d (1H, 5-H, J = 8.0 Hz), 6.45–
8.08 m (6H, 2-H, 3-H, Harom). 1H/13C HSQC spectrum, 
δ/δC, ppm: 1.03/13.54 and 1.13/13.56 (CH2CH3/
CH2CH3), 2.44/27.94 (CH3/CH3), 4.01/61.58 and 
4.18/62.19 (CH2CH3/CH2CH3), 4.26/62.32, 4.45/60.29 
(6-H/C6), 6.05/55.32 and 6.33/53.35 (5-H/C5). 
Found, %: C 52.71; H 4.92; N 11.77. C16H17N3O5S. 
Calculated, %: C 52.89; H 4.68; N 11.57.

Ethyl 7-hydroxy-7-methyl-5-(2-methylphenyl)-
6,7-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6-
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carboxylate (6). Yield 0.35 g (35%), off-white crystals, 
mp 131–132°C. IR spectrum, ν, cm–1: 3099 (OH), 2880 
(CH3) ,  1700 (C=O),  1606 (C=C),  1600–1615 
(C=Carom), 1500 (C=N). 1H NMR spectrum (ace-
tone-d6), δ, ppm: 0.90 t (3H, CH3CH2, J = 12.0 Hz), 
1.98 s (1H, OH), 2.25 s (3H, CH3), 2.47 d (1H, 6-H, 
J = 8.0 Hz), 3.68 s (3H, CH3C6H4), 4.04 d (1H, 5-H, 
J = 8.0 Hz), 3.82–3.88 m (2H, CH2CH3), 6.57–7.30 m 
(4H, Harom), 6.59 d (1H, 2-H, J = 4.0 Hz), 6.96 d (1H, 
3-H, J = 4.0 Hz). 1H/13C HSQC spectrum, δ/δC, ppm: 
0.90/13.80 (CH2CH3/CH2CH3), 2.25/29.74 (CH3/
CH3), 2.47/39.90 (6-H/C6), 3.68/55.34 (CH3C6H4/
CH3C6H4), 3.85/61.25 (CH2CH3/CH2CH3), 4.04/65.61 
(5-H/C5). Found, %: C 61.54; H 6.10; N 8.32. 
C17H20N2O3S. Calculated, %: C 61.44; H 6.02; N 8.78.

Ethyl 5-(4-chlorophenyl)-7-hydroxy-7-methyl-
5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carbox-
ylate (7). Yield 0.38 g (41%), yellow crystals, mp 117–
119°C. IR spectrum, ν, cm–1: 2970 (CH3), 1700 (C=O), 
1609 (C=C), 1599–1615 (C=Carom), 1510 (C=N). 
1H NMR spectrum (acetone-d6), δ, ppm: 1.12 t (3H, 
CH2CH3, J = 12.0 Hz), 1.64 s (1H, OH), 2.39 s (3H, 
CH3), 4.01–4.13 m (2H, CH2CH3), 4.17 d (1H, 6-H, 
J = 4.0 Hz), 5.95 d (1H, 5-H, J = 4.0 Hz), 6.45 d (1H, 
2-H, J = 4.0 Hz), 7.05 d (1H, 3-H, J = 4.0 Hz), 7.19–
7.40 m (4H, Harom). 1H/13C HSQC spectrum, δ/δC, 
ppm: 1.12/13.39 (CH3CH2/CH3CH2), 2.39/24.41 (CH3/
CH3), 4.07/61.45 (CH2CH3/CH2CH3), 4.17/61.53 
(6-H/C6), 5.95/54.78 (5-H/C5). Found, %: C 54.39; 
H 4.48; N 8.37. C16H17ClN2O3S. Calculated, %: 
C 54.47; H 4.82; N 7.94.

Ethyl 5-(4-bromophenyl)-7-hydroxy-7-methyl-
5H-[1,3]thiazolo[3,2-a]pyrimidine-6-carbox-
ylate (8). Yield 0.37 g (43%), brown crystals, mp 125–
127°C. IR spectrum, ν, cm–1: 2935 (CH3), 1712 (C=O), 
1622 (C=C), 1589–1604 (C=Carom), 1499 (C=N). 
1H NMR spectrum (CDCl3), δ, ppm: 1.13 t (3H, 
CH2CH3, J = 12.0 Hz), 1.67 s and 2.30 s (1H, OH), 
2.18 s (3H, CH3), 3.94 d and 4.04 d (1H, 6-H, J = 
8.0 Hz), 4.02–4.07 m and 4.09–4.14 m (2H, CH2CH3), 
5.41 d and 5.56 d (1H, 5-H, J = 12.0 Hz), 6.48 d 
(1H, 2-H), 6.79–7.44 m (4H, Harom), 7.07 d (1H, 3-H, 
J = 4.0 Hz). Found, %: C 48.65; H 3.95; N 7.38. 
C16H17BrN2O3S. Calculated, %: C 48.36; H 4.28; 
N 7.05.

Ethyl 2-hydroxy-2-methyl-2H-chromene-3-car-
boxylate (9). Yield 0.08 g (22%), colorless crystals, 
mp 111–113°C [10].
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