Halocyclization of 1-Allyl-6(7)-methylquinolin-2(1*H***)-ones**

D. G. Kim,* E. A. Vershinina, and V. V. Sharutin

*South Ural State University, pr. Lenina 76, Chelyabinsk, 454080 Russia *e-mail: kim_dg48@mail.ru*

Received July 19, 2017

Abstract—Oxidation of 1-allyl-6- and -7-methylquinolinium iodides with potassium hexacyanoferrate(III) gave 1-allyl-6(7)-methylquinolin-2(1*H*)-ones which reacted with halogens to afford 2-halomethyl-7(8) methyl-1,2-dihydro[1,3]oxazolo[3,2-*a*]quinolinium halides.

DOI: 10.1134/S1070428018040140

Quinolinium salts exhibit high physiological activity, and many of them have found practical application [1]. However, oxazoloquinolinium salts with bridgehead nitrogen atom remain poorly studied. Heterocyclizations of some 1-allylquinolin-2(1*H*)-ones by the action of iodine and bromine have been reported [2‒5]. In this work we studied for the first time reactions of 1-allyl-6- and -7-methylquinolin-2(1*H*)-ones **2a** and **2b** with iodine, bromine, and chlorine with the goal of synthesizing new 1,2-dihydro[1,3]oxazolo[3,2-*a*] quinolinium salts.

Compounds **2a** and **2b** were not reported previously. They were synthesized by oxidation of 1-allyl-6(7)-methylquinolinium iodides **1a** and **1b** with $K_3[Fe(CN)_6]$ according to [6] (Scheme 1). The IR spectra of **2a** and **2b** displayed a strong carbonyl stretching band at 1650 cm⁻¹, and their ¹H NMR spectra contained signals typical of allyl group. In the mass

spectra of 2a and 2b, the molecular ion peaks $[M]$ ⁺ had relative intensities of 41 and 49%, respectively, whereas the base peak was that of the $[M - CH_3]^+$ ion resulting from elimination of methyl radical with formation of aromatic oxazolo[3,2-*a*]quinolinium system. Elimination of allene molecule from the molecular ion gave methylquinolin-2(1*H*)-one radical cation with m/z 159 $[M - 40]$ ⁺ (Scheme 2).

Allylquinolinones **2a** and **2b** reacted with iodine to give 2-iodomethyl-7(8)-methyl-1,2-dihydro[1,3]oxazolo[3,2-*a*]quinolinium triiodides **3a** and **3b** regardless of the reactant ratio (1:1 or 1:2). Triiodide **3a** was also synthesized by oxidative iodocyclization of 1-allyl-6-methylquinolin-2(1*H*)-one **2a** (Scheme 3); in this case, compound **2a** was dissolved in excess 57% aqueous HI, and 30% hydrogen peroxide was then added.

The reaction of **2a** with bromine gave 2-bromomethyl-7-methyl-1,2-dihydro[1,3]oxazolo[3,2-*a*]quin-

 $R¹ = Me$, $R² = H$ (a); $R¹ = H$, $R² = Me$ (b).

olinium tribromide (**4a**) which was converted to bromide **5a** by treatment with acetone (Scheme 4). The structure of **4a** was determined by X-ray analysis (Fig. 1). The tricyclic system of molecule **4a** is planar, while the Br–Br bond lengths in almost linear tribromide ion Br_3^- [∠Br¹Br²Br³ 178.31(8)°] somewhat differ from each other $[2.511(2)$ and $2.567(2)$ Å].

Tribromide **4b** obtained by bromination of **2b** was treated with acetone to afford 2-bromomethyl-8 methyl-1,2-dihydro[1,3]oxazolo[3,2-*a*]quinolinium bromide **5b**. We also made an attempt to synthesize bromide **5b** by oxidative bromocyclization of **2b** under the action of $HBr-H₂O₂$. However, instead of expected compound **5b**, we isolated 4,7-dibromo-2-bromomethyl-8-methyl-1,2-dihydro[1,3]oxazolo[3,2-*a*]quinolinium bromide (**6**); i.e., the heterocyclization was accompanied by electrophilic substitution in the aro-

matic fragment (Scheme 5). The ¹H NMR spectrum of **6** contained three aromatic proton singlets at δ 8.16, 8.52, and 9.34 ppm.

Unlike quinolinone **2b**, no electrophilic substitution was observed in the reaction of $2a$ with HBr–H₂O₂. According to the ${}^{1}H$ NMR data, the products were compound **5a** and 1-(2,3-dibromopropyl)-6-methylquinolin-2(1*H*)-one 7 at a ratio of 1:0.5 (Scheme 5). Compound **7** is the product of bromine addition to the double bond of the allyl substituent. In the ${}^{1}H$ NMR spectrum of **7**, the CHBr proton resonated at δ 4.62 ppm, and the NCH₂ and CH₂Br proton signals were located at δ 4.85 and 4.09 ppm, respectively.

Under conditions of oxidative halocyclization quinolinones **2a** and **2b** could be converted to the corresponding hydrohalides. We studied the reaction of 1-allyl-6-methylquinolin-2(1*H*)-one **2a** with hydro-

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 54 No. 4 2018

 $R¹ = Me$, $R² = H$ (a); $R¹ = H$, $R² = Me$ (b).

bromic acid in acetone and found that the substrate was protonated at the oxygen atom with formation of 1-allyl-2-hydroxy-6-methylquinolinium bromide hydrate **8** (Scheme 6).

The structure of **8** was proved by X-ray analysis (Fig. 2). The $C^2 \cdots O^1$ distance [1.306(2) Å] is shorter than the sum of the covalent radii of carbon and oxygen atoms (1.51 Å) [7] but is longer than the C=O bond in aldehyde and ketone carbonyl groups [1.215(5) Å] [8]. In the crystal structure of **8**, the OH proton is involved in H-bonding with the oxygen atom of the hydration water molecule $(H_2O \cdots H 1.67 \text{ Å})$.

1-Allylquinolinones **2a** and **2b** reacted with chlorine according to the halocyclization path to produce 2-chloromethyl-7(8)-methyl-1,2-dihydro[1,3]oxazolo- [3,2-*a*]quinolinium chlorides **9a** and **9b** (Scheme 7).

In the $\mathrm{^{1}H}$ NMR spectra of oxazoloquinolinium halides **3**‒**5** and **9a**, signals from protons in the quinoline fragment are located significantly downfield (\sim) ppm) from those of the initial quinolinones due to the presence of a positive charge on the nitrogen atom.

Thus, the reaction of 1-allyl-6(7)-methylquinolin-2(1*H*)-ones with halogens involves heterocyclization with formation of 2-halomethyl-7(8)-methyl-1,2-dihydro[1,3]oxazolo[3,2-*a*]quinolinium halides, whereas their oxidative bromination with $HBr-H₂O₂$ is accompanied by other transformations.

EXPERIMENTAL

The ¹H NMR spectra were recorded on a Bruker Avance-500 spectrometer at 500 MHz using DMSO-*d*⁶ as solvent and tetramethylsilane as internal standard. The mass spectra (electron impact, 70 eV) were obtained on a Shimadzu QP2010 Ultra GC/MS instrument. The IR spectra were measured in KBr on Bruker Tensor 27 and Varian 800FT-IR Scimitar Series spectrometers. The elemental compositions were determined on a Carlo Erba 1108 automated analyzer. The X-ray diffraction data for compounds **4a** and **8** were acquired on a D8 QUEST automated four-circle diffractometer with a CCD detector $[M_0 K_\alpha]$ radiation, graphite monochromator, ω-scanning with a step of 1°; $296(2)$ K]; the results were deposited as cif files to the Cambridge Crystallographic Data Centre [CCDC entry nos. 1477008 (**4a**) and 1477694 (**8**)].

Compounds 2a and b (*general procedure***).** Allyl iodide, 0.01 mol, was added to a solution of 0.01 mol of 6- or 7-methylquinoline in 20 mL of acetone. The mixture was kept for 24 h, the precipitate was filtered

Fig. 1. Structure of the molecule of 2-bromomethyl-7 methyl-1,2-dihydro[1,3]oxazolo[3,2-*a*]quinolinium tribromide (**4a**) according to the X-ray diffraction data.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 54 No. 4 2018

Fig. 2. Structure of the molecule of 1-allyl-2-hydroxy-6 methylquinolinium bromide hydrate (**8**) according to the X-ray diffraction data.

off and dissolved in 70 mL of water, a solution of 16.8 g (0.03 mol) of potassium hydroxide in 30 mL of water and a solution of 65.8 g (0.02 mol) of potassium hexacyanoferrate(III) in 150 mL of water were added, and the mixture was stirred for 5 h at $0-5^{\circ}$ C. The mixture was extracted with 100 mL of diethyl ether, the solvent was distilled off from the extract, and the residue was distilled under reduced pressure.

1-Allyl-6-methylquinolin-2(1*H***)-one (2a).** Yield 0.756 g (38%), bp 175–180°C (6.7×10⁶ Pa), mp 35°C (from petroleum ether). IR spectrum: v 1650 cm⁻¹, s $(C=O)$. ¹H NMR spectrum, δ , ppm: 2.36 s (3H, CH₃), 4.87 d.t (2H, 1'-H, $3J = 4.7$ Hz), 4.93 d.d.t (1H, 3'-H, ${}^{3}J = 17.3$ Hz), 5.12 d.d.t (1H, 3'-H, ${}^{3}J = 10.5$ Hz), 5.92 d.d.t (1H, 2'-H, ${}^{3}J = 17.3$, 10.5, 4.6 Hz), 6.61 d $(1H, 3-H, {}^{3}J = 9.5 \text{ Hz})$, 7.34 d $(1H, 7-H, {}^{3}J = 8.5 \text{ Hz})$, 7.41 d (1H, 8-H, $3J = 8.7$ Hz), 7.52 s (1H, 5-H), 7.87 d $(1H, 4-H, {}^{3}J = 9.5 \text{ Hz})$. Mass spectrum, m/z (I_{rel} , %): 199 (49) $[M]^+$, 184 (100) $[M - CH_3]^+$, 159 (7) $[M - 40]^{\dagger}$, 143 (10), 115 (2), 103 (5), 77 (8), 63 (3), 39 (5). Found, %: C 78.15; H 6.45; N 7.45. C₁₃H₁₃NO. Calculated, %: C 78.36; H 6.58; N 7.03. *M* 199.25.

1-Allyl-7-methylquinolin-2(1*H***)-one (2b).** Yield 0.701 g (35%), bp 170–175°C (6.7×10⁶ Pa), mp 31°C (from petroleum ether). IR spectrum: v 1655 cm⁻¹, s $(C=O)$. ¹H NMR spectrum, δ , ppm: 2.43 s (3H, CH₃), \hat{A} .85 d (2H, 1'-H, \hat{J} = 4.7 Hz), 4.96 d.d (1H, 3'-H, \hat{J} = 17.3 Hz), 5.14 d.d (1H, $3'-H$, $3J = 10.5$ Hz), 5.94 d.d.t $(1H, 2' - H, {}^{3}J = 17.3, 10.5, 4.6 \text{ Hz}), 6.56 \text{ d} (1H, 3-H,$ $3J = 9.5$ Hz), 7.08 d (1H, 5-H, $3J = 7.9$ Hz), 7.26 s (1H, 8-H), 7.61 d (1H, 6-H, $3J = 7.9$ Hz), 7.89 d (1H, 4-H, ${}^{3}J = 9.5$ Hz). Mass spectrum, m/z (*I*_{rel}, %): 199 (41) $[M]^+$, 184 (100) $[M - \text{CH}_3]^+$, 170 (6) $[M - 29]^+$, 159 (4)

 $[M - 40]$ ⁺, 142 (15), 115 (11), 103 (5), 89 (4), 77 (8), 39 (8). Found, %: C 78.21; H 6.39; N 7.15. C13H13NO. Calculated, %: C 78.36; H 6.58; N 7.03. *M* 199.25.

Triiodides 3a and 3b (*general procedure***).** *a*. A solution of 0.051 g (0.2 mmol) of iodine in 5 mL of glacial acetic acid was added to a solution of 0.1 mmol of compound **2a** or **2b** in 3 mL of the same solvent. The precipitate was filtered off, washed with diethyl ether, and dried.

b. Aqueous HI (57%), 1 mL, was added to 0.2 mmol of compound **2a**, and 1 mL of 30% hydrogen peroxide was then added dropwise. The precipitate was filtered off, washed with diethyl ether, and dried.

2-Iodomethyl-7-methyl-1,2-dihydro[1,3]oxazolo- [3,2-*a***]quinolinium triiodide (3a).** Yield 0.066 g $(94%)$ (a) , 0.120 g $(85%)$ (b) , mp $95°C$. ¹H NMR spectrum, δ , ppm: 2.56 s (3H, CH₃), 3.79 d.d and 3.82 d.d (1H each, CH₂I, $^{2}J = 10.8$, $^{3}J = 5.9$ Hz), 4.75 d.d (1H, 1-H, $^2J = 11.9$, $^3J = 7.3$ Hz), 5.19 d.d $(1H, 1-H, {}^{2}J = 11.8, {}^{3}J = 9.8 \text{ Hz}), 5.79 \text{ m} (1H, 2-H),$ 7.81 d (1H, 4-H, $3J = 9.2$ Hz), 8.01 m (2H, 8-H, 9-H), 8.12 s (1H, 6-H), 9.00 d (1H, 5-H, $3J = 9.2$ Hz). Found, %: C 22.05; H 1.92; N 1.96. C₁₃H₁₃I₄NO. Calculated, %: C 22.09; H 1.85; N 1.98.

2-Iodomethyl-8-methyl-1,2-dihydro[1,3]oxazolo- [3,2-*a***]quinolinium triiodide (3b).** Yield 0.059 g $(83%)$ (a), mp 110°C. ¹H NMR spectrum, δ, ppm: 2.65 s (3H, CH₃), 3.82 d (2H, CH₂I, ³J = 5.9 Hz), 4.73 d.d (1H, 1-H, $^2J = 11.8$, $^3J = 7.2$ Hz), 5.17 d.d $(1H, 1-H, ²J = 11.8, ³J = 9.8 Hz)$, 5.77 m (1H, 2-H), 7.72 d (1H, 7-H, $3J = 8.4$ Hz), 7.74 d (1H, 4-H, $3J =$ 9.2 Hz), 7.95 s (1H, 9-H), 8.22 d (1H, 6-H, $3J =$ 8.2 Hz), 9.03 d (1H, 5-H, $3J = 9.2$ Hz). Found, %: C 22.03; H 1.87; N 1.94. $C_{13}H_{13}I_4NO$. Calculated, %: C 22.09; H 1.85; N 1.98.

2-Bromomethyl-7-methyl-1,2-dihydro[1,3]oxazolo[3,2-*a***]quinolinium tribromide (4a).** A solution of 0.2 mmol (0.01 mL) of bromine in 3 mL of chloroform was added to a solution of 0.1 mmol of quinolinone **2a** in 3 mL of chloroform. The precipitate was filtered off and dried. Yield 0.040 g (76%), mp 85°C.

Bromides 5a and 5b (*general procedure***).** A solution of 0.2 mmol (0.01 mL) of bromine in 3 mL of glacial acetic acid or chloroform was added to a solution of 0.1 mmol of quinolinone **2a** or **2b** in 3 mL of the same solvent. The precipitate was filtered off, treated with 3 mL of acetone, and dried.

2-Bromomethyl-7-methyl-1,2-dihydro[1,3]oxazolo[3,2-*a***]quinolinium bromide (5a).** Yield 0.023 g

(65%), mp 194 $^{\circ}$ C. ¹H NMR spectrum, δ , ppm: 2.57 s (H_1, CH_3) , 4.12 d.d (1H, CH₂Br, ²J = 11.4, ³J = 5.9 Hz), 4.15 d.d (1H, CH₂Br, ² $J = 11.4$, ³ $J = 4.6$ Hz), 4.87 d.d (1H, 1-H, $^{2}J = 11.9$, $^{3}J = 7.2$ Hz), 5.23 d.d $(1H, 1-H, {}^{2}J = 11.8, {}^{3}J = 10.0 \text{ Hz}$, 5.94 m (1H, 2-H), 7.82 d (1H, 4-H, $3J = 9.2$ Hz), 7.99 m (2H, 8-H, 9-H), 8.15 s (1H, 6-H), 9.03 d (1H, 5-H, $3J = 9.3$ Hz). Found, %: C 43.45; H 3.67; N 3.93. $C_{13}H_{13}Br_2NO$. Calculated, %: C 43.49; H 3.65; N 3.90.

2-Bromomethyl-8-methyl-1,2-dihydro[1,3]oxazolo[3,2-*a***]quinolinium bromide (5b).** Yield 0.024 g (68%), mp 135°C. ¹H NMR spectrum, δ , ppm: 2.65 s (H_1, CH_3) , 4.11 d.d (1H, CH₂Br, ²J = 11.4, ³J = 5.8 Hz), 4.15 d.d (1H, CH₂Br, ² $J = 11.4$, ³ $J = 4.7$ Hz), 4.86 d.d (1H, 1-H, $^2J = 11.9$, $^3J = 7.0$ Hz), 5.17 d.d $(1H, 1-H, {}^{2}J = 11.8, {}^{3}J = 10.0 \text{ Hz}$, 5.93 m (1H, 2-H), 7.72 d (1H, 7-H, $3J = 8.4$ Hz), 7.76 d (1H, 4-H, $3J =$ 9.2 Hz), 7.94 s (1H, 9-H), 8.23 d (1H, 6-H, $3J =$ 8.2 Hz), 9.04 d (1H, 5-H, $3J = 9.2$ Hz). Found, %: C 43.47; H 3.62; N 3.92. $C_{13}H_{13}Br_2NO$. Calculated, %: C 43.49; H 3.65; N 3.90.

4,7-Dibromo-2-bromomethyl-8-methyl-1,2-dihydro[1,3]oxazolo[3,2-*a***]quinolinium bromide (6).** Aqueous HBr (40%), 2 mL, was added to 0.2 mmol of quinolinone **2b**, and 2 mL of 30% hydrogen peroxide was then added dropwise. The precipitate was filtered off, washed with 3 mL of acetone, and dried. Yield 0.072 g (70%), mp 189 $^{\circ}$ C. ¹H NMR spectrum, δ , ppm: 2.65 s (3H, CH₃), 4.12 d (2H, CH₂Br, ³ $J = 5.5$ Hz), 4.96 d.d (1H, 1-H, $^2J = 12.1$, $^3J = 7.2$ Hz), 5.27 d.d $(1H, 1-H, {}^{2}J = 12.2, {}^{3}J = 9.9$ Hz), 5.99 m (1H, 2-H), 8.16–9.34 m (3H, 5-H, 6-H, 9-H). Found, %: C 30.23; H 2.17; N 2.75. C₁₃H₁₁Br₄NO. Calculated, %: C 30.21; H 2.15; N 2.71.

1-Allyl-2-hydroxy-6-methylquinolinium bromide hydrate (8). Compound **2a**, 0.1 mmol, was dissolved in 1 mL of acetone, 1 mL of 40% aqueous HBr was added, and the mixture was left to stand for 24 h. The precipitate was filtered off and dried. Yield 84%, mp 157°C. Found, %: C 52.42; H 5.32; N 4.65. $C_{13}H_{16}BrNO_2$. Calculated, %: C 52.36; H 5.37; N 4.70.

Chlorides 9a and 9b (*general procedure***).** Gaseous chlorine was passed through a solution of 0.4 mmol of compound **2a** or **2b** in 5 mL of carbon tetrachloride until a solid no longer separated. The precipitate was filtered off, washed with acetone, and dried.

2-Chloromethyl-7-methyl-1,2-dihydro[1,3]oxazolo[3,2-*a***]quinolinium chloride (9a).** Yield 0.052 g (48%), mp 120° C. ¹H NMR spectrum, δ , ppm: 2.57 s $(3H, CH₃)$, 4.32 m (2H, CH₂Cl), 4.95 m and 5.25 m (1H each, 1-H), 5.96 m (1H, 2-H), 7.84 d (1H, 4-H, $3J = 9.2$ Hz), 8.01 m (2H, 8-H, 9-H), 8.15 s (1H, 6-H), 9.05 d (1H, 5-H, $3J = 9.2$ Hz). Found, %: C 57.83; H 4.82; N 5.13. $C_{13}H_{13}Cl_2NO$. Calculated, %: C 57.80; H 4.85; N 5.18.

2-Chloromethyl-8-methyl-1,2-dihydro[1,3]oxazolo[3,2-*a***]quinolinium chloride (9b).** Yield 0.034 g (31%), mp 137°C. ¹H NMR spectrum, δ , ppm: 2.65 s (H_1, CH_3) , 4.26 d.d (1H, CH_2C , $^2J = 12.4$, $^3J =$ 5.6 Hz), 4.29 d.d (1H, CH₂Cl, ² $J = 12.4$, ³ $J = 4.0$ Hz), 4.90 d.d (1H, 1-H, $^2J = 11.9$, $^3J = 7.1$ Hz), 5.19 d.d $(1H, 1-H, {}^{2}J = 11.6, {}^{3}J = 10.0 \text{ Hz}$, 5.95 m (1H, 2-H), 7.72 d (1H, 7-H, $3J = 8.4$ Hz), 7.76 d (1H, 4-H, $3J =$ 9.2 Hz), 7.93 s (1H, 9-H), 8.24 d (1H, 6-H, $3J =$ 8.2 Hz), 9.06 d (1H, 5-H, $3J = 9.2$ Hz). Found, %: C 57.83; H 4.87; N 5.15. $C_{13}H_{13}Cl_2NO$. Calculated, %: C 57.80; H 4.85; N 5.18.

This study was performed under financial support by the Government of the Russian Federation (resolution no. 211, March 16, 2013; contract no. 02.A03.21.0011) and in the framework of state assignment no. 4.9665.2017/BCh.

REFERENCES

- 1. Gutsulyak, B.M., *Russ. Chem. Rev*. 1972, vol. 41, p. 187.
- 2. Kim, D.G., Brisyuk, N.P., and Lykasova, E.A., *Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol*., 1991, vol. 34, p. 120.
- 3. Gyul'budagyan, L.V., Aleksanyan, I.L., and Aveti syan, A.A., *Arm. Khim. Zh*., 1989, vol. 42, p. 636.
- 4. Ukrainets, I.V., Sidorenko, L.V., Gorokhova, O.V., Shish kina, S.V., and Turov, A.V., *Chem. Heterocycl. Compd*., 2007, vol. 43, no. 5, p. 617.
- 5. Ukrainets, I.V., Mospanova, E.V., Dzharadat, N.A., Bevz, O.V., and Turov, A.V., *Chem. Heterocycl. Compd*., 2012, vol. 48, no. 9, p. 1347.
- 6. Gesto, S., de la Cuesta, E., and Avendano, S., *Synth. Commun*., 1989, vol. 19, p. 3523.
- 7. Batsanov, S.S., *Zh. Neorg. Khim*., 1991, vol. 12, p. 3015.
- 8. Allen, F.N., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., and Taylor, R., *J. Chem. Soc., Perkin Trans. 2*, 1987, no. 12, p. S1.