
ISSN 1070-4280, Russian Journal of Organic Chemistry, 2016, Vol. 52, No. 6, pp. 806–812. © Pleiades Publishing, Ltd., 2016. 
Original Russian Text © P.I. Fedorov, T.P. Fedorova, V.P. Sheverdov, G.P. Pavlov, A.V. Eremkin, 2016, published in Zhurnal Organicheskoi Khimii, 2016, 
Vol. 52, No. 6, pp. 821–826. 

806 

Compounds of the Menthane Series. Synthesis of Unsaturated 
Primary Alcohols with the o- and p-Menthane Skeletons 

P. I. Fedorov,*  T. P. Fedorova,  V. P. Sheverdov,  G. P. Pavlov,  and  A. V. Eremkin 

I.N. Ul’yanov Chuvash State University, Moskovskii pr. 15, Cheboksary, 428015 Russia 
*e-mail: paf@myrambler.ru 

Received January 11, 2016 

Abstract—Precursors to terpene alcohols of the o- and p-menthane series (o-cimen-7-ol and o- and p-cimen-9-
ols) were synthesized, and their reduction with lithium in ethylenediamine was studied. The reduction of o- and 
p-cimen-9-ols in the presence of isopropyl alcohol selectively afforded the corresponding 1,4-dihydro deriv-
atives. Under analogous conditions, o-cimen-7-ol was converted into a mixture of unsaturated hydrocarbons. 
The reduction with lithium in ethylenediamine in the absence of isopropyl alcohol in all cases gave mixtures of 
menthene alcohols. 

Hlg = Cl (a), Br (b); i: MeMgI, Et2O; ii: phthalic anhydride; iii: MeMgI, CH2O; iv: Na, PrOH. 

Oxygen-containing menthane compounds isolated 
from coniferous trees and plant essential oils include 
mainly tertiary terpene alcohols. Primary p-menthenols 
and p-menthadienols are rare components which were 
found in some valuable rose and lemon essential oils 
[1–3]. Perillic alcohol synthesized from β-pinene 
epoxide showed excellent antimicrobial and antitumor 
activities [4]. Primary alcohols derived from limonene 
are used as intermediate products in the synthesis of 
biologically active compounds [5–8]. Primary alcohols 
of the o-menthane series have not been reported in  
the literature. 

In this work, partial reduction of the aromatic ring 
in isomeric cimenols was accomplished using a conve-
nient and efficient system developed by us previously, 
namely Li–i-PrOH in the presence of a small amount 
of ethylenediamine [9, 10]. The substrates were (2-iso-
propylphenyl)methanol (o-cimen-7-ol, 1) 2-(2-methyl-
phenyl)propan-1-ol (o-cimen-9-ol, 2), and 2-(4-meth-
ylphenyl)propan-1-ol (p-cimen-9-ol, 3). Compound 1 

was synthesized as shown in Scheme 1. The yield of 
tertiary alcohol 5a from ethyl o-chlorobenzoate (4a) 
was higher (82%) than from bromine-containing 
analog 4b (71%). Dehydration of alcohols 5a and 5b 
gave unsaturated compounds 6a and 6b which were 
alkylated with methylmagnesium iodide. The yield of 
primary alcohol 7 from bromo derivative 6b was twice 
as high as that from chloro analog 6a, which may be 
due to higher reactivity of bromoarenes in the Grignard 
reaction [11]. 

Steric structure of initial o- and p-tolylpropenes 
turned out to be essential in the synthesis of ortho- and 
para-cimen-9-ols. The hydroboration of 2-(2-methyl-
phenyl)propene (8), followed by oxidation of inter-
mediate organoborane, afforded 72% of a mixture of 
isomeric alcohols 2 and 9 at a ratio of 4 : 1 (Scheme 2). 
Analogous reaction of 2-(4-methylphenyl)propene (13) 
led to the formation of 90% of a mixture of primary 
and tertiary alcohols 3 and 14 at a ratio of 9 :  1  
(Scheme 3). 
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The reduction of aromatic alcohols 2 and 3 to 
cyclohexadiene derivatives 10 and 15 was carried out 
at a substrate–lithium–isopropyl alcohol–ethylene- 
diamine rat io  of  1  :  6  :  12  :  0 .5 .  The y ields of   
2-(2-methylcyclohexa-1,4-dien-1-yl)propan-1-ol (10) 
and 2-(4-methylcyclohexa-1,4-dien-1-yl)propan-1-ol 
(15) were 56 and 42%, respectively. When the ratio  
2 (3)–Li–ethylenediamine was 1 : 8 : 20 (no isopropyl 
alcohol was added), o-cimen-9-ol 2 was converted into 

a mixture of 2-(2-methylcyclohex-1-en-1-yl)propan-1-
ol (11) and 2-(6-methylcyclohex-1-en-1-yl)propan-1-ol 
(12) at a ratio of 4 : 3 with an overall yield of 92%, 
whereas p-cimen-9-ol 3 gave rise to 85% of a mixture 
of 2-(4-methylcyclohex-3-en-1-yl)propan-1-ol (16) 
and 2-(4-methylcyclohex-1-en-1-yl)propan-1-ol (17) at 
a ratio of 1 : 9. Under analogous conditions, alcohol 1 
was reduced to a mixture of (2-isopropylcyclohex-1-
en-1-yl)methanol (18) and (2-isopropylcyclohex-2-en-
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1-yl)methanol (19) at a ratio of 1 : 3.5 (overall yield 
75%; Scheme 4).   

The reduction of o-cimen-7-ol 1 with Li–i-PrOH–
ethylenediamine was accompanied by elimination of 
the hydroxy group with formation of a mixture of 
unsaturated hydrocarbons 20–24. This result was 
consistent with published data [12–14] on the Birch 
reduction of structurally related compounds, and the 
product composition was similar to that obtained in  
the reduction of o-cimene with the same system [9]  
(yield 90%, conversion 85%, 20–21–22–23–24 ratio 
6 : 1 : 2 : 1 : 1). 

Thus, the reducing system lithium–ethylenediamine 
can be used for the synthesis of primary unsaturated 
alcohols of the o- and p-menthane series from aromatic 
precursors. 1,4-Dihydro derivatives can be obtained by 
the reduction of o- and p-cimen-9-ols with lithium–
isopropyl alcohol–ethylenediamine. 

EXPERIMENTAL 

The IR spectra were recorded on a UR-20 spec-
trometer from thin films. The UV spectra of solutions 
in ethanol were measured on an SF-4D spectro-
photometer. The 1H NMR spectra were recorded on  
a Varian HA-100 spectrometer using carbon tetra-
chloride as solvent and tetramethylsilane (TMS) as 
internal standard. The 13C NMR spectra were obtained 
on a Bruker WH-90 instrument at 22.63 MHz from 
solutions in CDCl3 (c ≈ 30 vol %) with TMS as 
internal standard (pulse duration 9 s, ~60°; pulse delay 
12 s). Alcohols 1, 2, 7, 10–12, 18, and 19 were 
analyzed on an LKhM-8MD chromatograph equipped 
with a thermal conductivity detector and a 3000 ×  

3 -mm column packed with 5% of  XE-60 on  

Chromaton N-AW-DMCS (0.20–0.25 mm); oven 
temperature 135°C, carrier gas nitrogen, flow rate  
40 mL/min; relative retention time: 1.00 (1), 0.92 (7), 
0.61 (18), 0.49 (19); oven temperature 160°C, relative 
retention time: 1.00 (2), 0.83 (10), 0.60 (11), 0.54 (12). 
Compounds 3 and 15–17 were analyzed on an LKhM-
8MD model 3 chromatograph (flame ionization detec-
tor, 3000 × 3-mm column packed with 5% of XE-60 on 
Chromaton N-AW–DMCS (0.20–0.25 mm); oven 
temperature 150°C, carrier gas nitrogen, flow rate  
50 mL/min; relative retention time: 1.00 (3), 0.91 (15), 
0.61 (16), 0.51 (17). 

Tertiary aromatic alcohols 9 and 14 synthesized 
previously [15, 16] were used in the GLC analysis of 
the hydroboration–oxidation products of 8 and 9. Com-
pounds 4a and 4b were commercial products. Alcohols 
2, 5a, and 5b were prepared as described in [17]. 

(2-Isopropylphenyl)methanol (1) was synthesized 
by reduction of 14.8 g (0.10 mol) of unsaturated 
alcohol 7 with 13.8 g (0.60 mol) of finely cut metallic 
sodium in 130 mL (1.80 mol) of propan-1-ol on 
stirring at 100°C, followed by conventional treatment. 
Yield 10.00 g (71%), purity 98% (GLC), bp 93–94°C 
(5 mm), d4

20 = 0.9305, nD
20 = 1.5202; MRD = 46.59, 

calcd. 46.31. IR spectrum, ν, cm–1: 3340, 1040 (OH), 
3040, 1380, 1365 [CH(CH3)2]. 

1H NMR spectrum, δ, 
ppm: 1.18 d (6H, CH3, J  = 7 Hz), 2.80 m [1H,  
CH(CH3)2], 3.26 q (CH2), 4.43 (1H, OH), 7.07 m (4H, 
Harom). Found, %: C 79.80; H 9.11. C10H14O. Calcu-
lated, %: C 79.96; H 9.39.                                         

2-(2-Methylphenyl)propan-1-ol (2). A solution of 
30.2 mL (0.24 mol) of boron trifluoride–diethyl ether 
complex in 40 mL of anhydrous dioxane was added 
dropwise at 30–35°C to a mixture of 7.6 g (0.20 mol) 



COMPOUNDS  OF  THE  MENTHANE  SERIES.  

RUSSIAN  JOURNAL  OF  ORGANIC  CHEMISTRY   Vol.  52   No.  6   2016 

809 

of NaBH4, 300 mL of anhydrous dioxane, and 79.2 g 
(0.60 mol) of compound 8. The mixture was stirred for 
2 h at that temperature, excess NaBH4 was decom-
posed by treatment with 60 mL of water, 64 mL of  
a 3 N solution of sodium hydroxide was added at 30–
40°C, and 64 mL of 30% H2O2 was then added 
dropwise, maintaining the temperature not higher than 
45°C. The mixture was stirred for 20 min, the organic 
layer was separated, and the aqueous layer was 
extracted with diethyl ether (3 × 100 mL). The extracts 
were combined with the organic phase and dried over 
Na2SO4, the solvent was distilled off, and the residue, 
65.00 g (74%), was subjected to vacuum distillation to 
isolate 44.00 g (50%) of 2. Purity 99% (GLC), bp 105–
106°C (6 mm), d4

20 = 1.0034, nD
20 = 1.5265; MRD 45.99, 

calcd. 46.31; published data [18]: bp 135–136°C  
(24 mm). IR spectrum, ν, cm–1: 3460, 1040 (OH), 
3072, 3085, 1680, 1590, 1380 (CH3). 

1H NMR spec-
trum, δ, ppm: 1.17 d (3H, CH3CH, J = 6.8 Hz), 1.87 s 
(1H, OH), 2.31 s (3H, 2-CH3), 3.21 m (1H, CHCH3), 
3.64 m (2H, CH2), 7.21 m (4H, Harom). Found, %:  
C 79.82; H 9.18. C10H14O. Calculated, %: C 79.96;  
H 9.39.  

2-(2-Methylphenyl)propyl 2-nitrobenzoate.  
mp 55–56°C (from EtOH–petroleum ether, 3 :  1). 
Found, %: C 68.41; H 5.84; N 4.56. C17H17NO4. Cal-
culated, %: C 68.22; H 5.72; N 4.68. 

2-(2-Methylphenyl)propyl 3,5-dinitrobenzoate. 
mp 115.5–116.5°C (from pentane). Found %: C 59.32; 
H 4.80; N 7.85. C17H16N2O6. Calculated, %: C 59.30; 
H 4.68; N 8.14. 

2-(4-Methylphenyl)propan-1-ol (3) was synthe-
sized as described above for ortho isomer 2 by adding 
a solution of 12 mL (0.11 mol) of boron trifluoride–
diethyl ether complex in 30 mL of anhydrous dioxane 
to a mixture of 3.00 g (0.08 mol) of NaBH4, 100 mL  
of anhydrous dioxane, and 32.00 g  (0.24 mol) of  
p-tolylpropene 13. Decomposition of intermediate 
organoborane with 25 mL of 3 N NaON and 25 mL of 
30% H2O2 gave 30.00 g (90%) of a mixture of com-
pounds 3 and 14, which was subjected to vacuum 
distillation to isolate 20.00 g (60%) of 3 with a purity 
of 99% (GLC), bp 97–98°C (5 mm), d4

20 = 0.9848,  
nD

20 = 1.5265; MRD = 46.41, calcd. 46.31. IR spectrum, 
ν, cm–1: 3390, 1045 (OH), 3095, 3060, 1660, 825  
(1,4-C6H4), 1375 (CH3). 

1H NMR spectrum, δ, ppm: 
1.10 d (3H, CH3CH, J = 7.04 Hz), 2.14 s (1H, OH), 
2.17 s (3H, 4-CH3), 2.67 m (1H, CH), 3.41 m (2H, 
CH2), 6.43 m (4H, Harom). Found, %: C 79.66; H 9.03. 
C10H14O. Calculated, %: C 79.96; H 9.39. 

2-(2-Chlorophenyl)propan-2-ol (5a). A 38% solu-
tion of ammonium chloride, 58 mL, was added at –5°C 
to the product obtained by reaction of 26.50 g  
(0.14 mol) of ester 4a in 35 mL of anhydrous diethyl 
ether with methylmagnesium iodide [prepared from  
9.1 g (0.37 mol) of magnesium and 53.3 g (0.37 mol) 
of freshly distilled methyl iodide in 85 mL of anhy-
drous diethyl ether]. The ether layer was separated by 
decanting, and the pasty precipitate was extracted with 
diethyl ether (3 × 35 mL). The extracts were combined, 
dried over Na2SO4, and evaporated. Yield 19.40 g 
(82%), purity 95% (GLC), bp 99–100°C (5 mm), d4

20 = 
1.1576, nD

20 = 1.5420; MRD 46.43, calcd. 46.55; 
published data [19]: mp 23.7°C, bp 79.2°C (2.2 mm), 
nD

20 = 1.5416. IR spectrum, ν, cm–1: 3460, 1175 (OH), 
1370, 1385 [C(CH3)2], 690 (C–Cl). 1H NMR spectrum, 
δ, ppm: 1.64 s (6H, CH3), 2.46 s (1H, OH), 6.9–7.7 m 
(4H, Harom). Found, %: C 63.00; H 6.42; Cl 20.71. 
C9H11ClO. Calculated, %: C 63.35; H 6.50; Cl 20.78. 

2-(2-Chlorophenyl)propan-2-yl benzoate.  
mp 113–114°C (from EtOH). Found, %: C 69.35;  
H 5.20; Cl 12.81. C16H15ClO2. Calculated, %: C 69.95; 
H 5.50; Cl 12.90.  

2-(2-Chlorophenyl)propan-2-yl 2-nitrobenzoate. 
mp 55–56°C (from EtOH–petroleum ether, 3 :  1). 
Found, %: C 60.22; H 4.30; Cl 10.95; N 4.20. 
C16H14NClO4. Calculated, %: C 60.10; H 4.41;  
Cl 11.09. N 4.38. 

2-(2-Chlorophenyl)propan-2-yl 3,5-dinitroben-
zoate.  mp 88–89°C (from pentane). Found, %:  
C 52.30; H 3.61; Cl 9.60; N 7.52. C16H13N2ClO6. Cal-
culated, %: C 52.69; H 3.59; Cl 9.72; N 7.69.  

2-(2-Bromophenyl)propan-2-ol (5b) was synthe-
sized in a similar way from 100.00 g of ester 4b. Yield 
65.00 g (71%), purity 99% (GLC), bp 91–92°C  
(1.5 mm), d4

20 = 1.4212, nD
20 = 1.5665; MRD 49.41, 

calcd. 49.55; published data [19]: bp 112°C (5.2 mm), 
nD

20 = 1.5634. IR spectrum, ν, cm–1: 3470, 1180 (OH), 
1390, 1370 [C(CH3)2], 690 (C–Cl). 1H NMR spectrum, 
δ, ppm: 1.69 s (6H, CH3), 2.57 s (1H, OH), 7.06– 
7.65 m (4H, Harom). 13C NMR spectrum, δC, ppm: 
146.4 (C1), 120.1 (C2), 134.7 (C3), 127.1 (C4, C5), 
127.9 (C6), 73.0 (CHO), 29.5 (CH3). Found, %:  
C 50.01; H 5.20; Br 36.85. C9H11BrO. Calculated, %: 
C 50.26; H 5.16; Br 37.15. 

2-(2-Bromophenyl)propan-2-yl benzoate.  
mp 115–116°C (from EtOH). Found, %: C 59.95;  
H 4.65; Br 25.12. C16H15BrO2. Calculated, %: C 60.20; 
H 4.75; Br 25.03. 
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2-(2-Bromophenyl)propan-2-yl 4-nitrobenzoate. 
mp 67–68°C (from EtOH–petroleum ether, 3 :  1). 
Found, %: C 52.45; H 4.00; Br 21.72; N 3.71. 
C16H14BrNO4. Calculated, %: C 52.77; H 3.87;  
Br 21.94; N 3.85. 

2-(2-Bromophenyl)propan-2-yl 3,5-dinitroben-
zoate.  mp 84–85°C (from pentane). Found, %:  
C 47.60; H 3.05; Br 19.20; N 28.21. C16H13BrN2O6. 
Calculated, %: C 46.98; H 3.19; Br 19.53; N 28.01.  

2-(2-Chlorophenyl)propene (6a). A mixture of 
15.90 g (0.10 mol) of alcohol 5a and 15 g (0.12 mol) 
of phthalic anhydride was heated for 24 h at 125– 
130°C. Vacuum distillation of the resulting oily 
material (12.80 g) gave 11.30 g (79%) of 6a. Purity 
98% (GLC), bp 57–58°C (5 mm), d4

20 = 1.0598, nD
20 = 

1.5330; MRD 44.69, calcd. 44.56; published data [20]: 
bp 72–73°C (14 mm), nD

25 = 1.5324. IR spectrum, ν, 
cm–1: 3085, 1642, 910 (C=CH2), 1370 (CH3), 730  
(C–Cl). 1H NMR spectrum, δ, ppm: 2.06 s (3H, CH3), 
4.90 m and 5.12 m (2H, =CH2), 7.92–7.30 m (4H, 
Harom). Found, %: C 70.68; H 6.02; Cl 23.13. C9H9Cl. 
Calculated, %: C 70.83; H 5.94; Cl 23.23. 

2-(2-Bromophenyl)propene (6b) was synthesized 
in a similar way by dehydration of 65.00 g (0.33 mol) 
of compound 5b with 49.50 g (0.36 mol) of phthalic 
anhydride. The oily crude product, 49.50 g, was 
distilled under reduced pressure. Yield 46.50 g (77%), 
purity 98% (GLC), bp 64–65°C (1 mm), d4

20 = 1.5365, 
nD

20 = 1.5595; MRD 47.50, calcd. 47.46; published data 
[21]: bp 55–65°C (0.9 mm), nD

27 = 1.553. IR spectrum, 
ν, cm–1: 3090, 1648, 910 (C=CH2), 740 (C–Br).  
1H NMR spectrum, δ, ppm: 2.07 m (3H, CH3), 4.95 m 
and 5.23 m (2H, =CH2), 7.03–7.37 m (3H, Harom),  
7.58 d (1H, 3-H, J = 7 Hz). 13C NMR spectrum, δC, 
ppm: 145.5 (C1), 128.1 (C2), 129.5 (C3, C4), 126.9 
(C5), 132.8 (C6), 121.7 (C7), 116.0 (C8), 23.5 (CH3). 
Found, %: C 54.51; H 4.40; Br 40.35. C9H9Br. Cal-
culated, %: C 54.85; H 4.60; Br 40.55. 

(2-Isopropenylphenyl)methanol (7). Formalde-
hyde generated by depolymerization of 30.00 g  
(1.00 mol) of paraformaldehyde (preliminarily dried 
over P2O5) at 170–180°C was passed in a stream of 
nitrogen through a solution of Grignard reagent pre-
pared from 17.00 g (0.09 mol) of compound 6b in  
150 mL of anhydrous diethyl ether and 2.80 g  
(0.12 mol) of magnesium, maintaining the temperature 
at 40°C. The mixture was treated with 80 g of finely 
crushed ice, the yellow precipitate was dissolved in  
80 mL of a 2 N solution of sodium sulfate, and the 
solution was steam-distilled. The distillate was ex-

tracted with diethyl ether (3 × 50 mL), and the com-
bined extracts were dried over Na2SO4 and evaporated. 
Yield 8.00 g (66%), purity 98% (GLC), bp 103–104°C  
(5 mm), d4

20 = 1.0193, nD
20 = 1.5470; MRD 46.11, calcd. 

45.84. IR spectrum, ν, cm–1: 3360, 1050 (OH), 3080, 
1658, 910 (C=CH2), 3040, 730 (1,2-C6H4). 

1H NMR 
spectrum, δ, ppm: 2.04 (3H, CH3), 2.14 s (1H, OH), 
4.63 s (2H, CH2OH), 4.91 q and 5.23 q (2H, =CH2, J = 
1.4 Hz), 7.11–7.59 m (4H, Harom). Found, %: C 80.79; 
H 7.94. C10H12O. Calculated, %: C 81.04; H 8.16.  

Reduction of compounds 1–3 (general proce-
dures). a. A mixture of 75.00 g (0.50 mol) of com-
pound 2 or 3, 360 g (6.00 mol) of isopropyl alcohol, 
and 15.00 g (0.25 mol) of anhydrous ethylenediamine 
was heated under stirring to 85–95°C, the heating bath 
was removed, and 20.70 g (3.00 mol) of finely cut 
lithium was added over a period of 30 min on cooling 
with tap water. After complete dissolution of lithium, 
the mixture was stirred for 20 min, cooled to room 
temperature, and diluted with 0.5 L of water. The 
organic phase was separated, washed with water 
(3 × 200 mL), and dried over Na2SO4. The yield of the 
reduction products was 75–92%, the conversion being 
54% (2) and 68% (3). Fractionation in a column with 
60 theoretical plates gave primary cyclohexadiene 
alcohols which did not absorb above λ 225 nm in the 
UV spectrum. 

2-(2-Methylcyclohexa-1,4-dien-1-yl)propan-1-ol 
(10). Yield 56%, purity 90% (GLC), bp 83–84°C  
(1 mm), d4

20 = 0.9665, nD
20 = 1.4992; MRD 46.28, calcd. 

46.77. IR spectrum, ν, cm–1: 3360, 1035 (OH), 3065, 
3035, 1695, 980, 670 (C=C, C=CH), 1380 (CH3).  
1H NMR spectrum, δ, ppm: 1.35 d (3H, C10H3, J =  
6.9 Hz), 1.62 s (3H, C7H3), 5.70–5.40 m (2H, 
CH=CH), 3.65–3.40 m (3H, CH2O, CH), 2.60 s (1H, 
OH), 2.40–1.80 m (4H, CH2). Found, %: C 78.49;  
H 10.90. C10H16O. Calculated, %: C 78.90; H 10.56. 

2-(4-Methylcyclohexa-1,4-dien-1-yl)propan-1-ol 
(15). Yield 42%, purity 92% (GLC), bp 79–80°C  
(1 mm), d4

20 = 0.9686, nD
20 = 1.4986; MRD 46.12, calcd. 

46.77. IR spectrum, ν, cm–1: 3380, 1045 (OH), 3025, 
1660, 825 (C=CH), 1380 (CH3). 

1H NMR spectrum, δ, 
ppm: 0.87–1.05 m (3H, C10H3), 1.57 m (3H, C7H3), 
2.47 m (5H, CH2, OH), 3.26–3.88 m (3H, CH, CH2O), 
5.33 m (2H, C=CH). Found, %: C 79.10; H 10.40. 
C10H16O. Calculated, %: C 78.90; H 10.56. 

b. A mixture of 7.00 g (0.50 mol) of alcohol 1–3 
and 600.00 g (10.00 mol) of anhydrous ethylenedi-
amine was heated to 90–100°C, and 27.40 g (4.00 mol) 
of finely cut lithium was added. As the metal dis-
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solved, the mixture turned bright blue. It was heated 
for 48 h at 90°C until the blue color disappeared com-
pletely, cooled, and treated with 0.5 L of water. The 
organic phase was separated, the aqueous phase was 
extracted with diethyl ether (3 × 100 mL), the extracts 
were combined with the organic phase and dried over 
Na2SO4, and the solvent was distilled off. Yield 70–
75%, conversion 75% (1), 66% (2), 80% (3). Frac-
tionation in a column with 60 theoretical plates gave 
primary menthene alcohols.           

2-(2-Methylcyclohex-1-en-1-yl)propan-1-ol (11). 
Purity 98% (GLC), bp 78–79°C (3 mm), d4

20 = 0.9463, 
nD

20 = 1.4910; MRD 47.21, calcd. 47.24. IR spectrum, 
ν, cm–1: 3370, 1040 (OH), 1665 (C=C). 1H NMR spec-
trum, δ, ppm: 0.91 d (3H, C10H3, J = 6.8 Hz), 1.50–
2.15 m (9H, OH, CH2), 1.65 s (3H, C7H3), 2.96 m  
(1H, CH), 3.44 m and 3.51 m (2H, CH2O). Found, %: 
C 78.08; H 11.55. C10H18O. Calculated, %: C 77.87;  
H 11.76. 

2-(6-Methylcyclohex-1-en-1-yl)propan-1-ol (12). 
Purity 98% (GLC), bp 73–74°C (5 mm), d4

20 = 0.9448, 
nD

20 = 1.4880; MRD 47.03, calcd. 47.24. IR spectrum, ν, 
cm–1: 3370, 1035 (OH), 3060, 1675, 815 (C=CH).  
1H NMR spectrum, δ, ppm: 0.99 d (3H, C7H3, J =  
7.0 Hz), 1.03 d (3H, C10H3, J = 6.8 Hz), 1.45–2.45 m 
(7H, OH, CH2), 2.90 m (1H, CH), 3.45 m and 3.53 m 
(2H, CH2O), 5.51 m (1H, C=CH). Found, %: C 77.59; 
H 11.90. C10H18O. Calculated, %: C 77.87; H 11.76. 

2-(4-Methylcyclohex-3-en-1-yl)propan-1-ol (16). 
Purity 95% (GLC), bp 99–100°C (1 mm), d4

20 = 
0.9442, nD

20 = 1.4845; MRD 46.90, calcd. 47.24. IR 
spectrum, ν, cm–1: 3055, 1035 (OH), 3060, 1675, 815 
(C=CH). 1H NMR spectrum, δ, ppm: 0.79–2.64 m (8H, 
CH2, CH), 0.86 d (3H, CHCH3, J = 6.75 Hz), 1.65 s 
(3H, CH3C=), 2.79 s (1H, CH), 3.38 m (2H, CH2O), 
5.30 m (1H, C=CH). Found, %: C 78.01; H 11.92. 
C10H18O. Calculated, %: C 77.87; H 11.76. 

2-(4-Methylcyclohex-1-en-1-yl)propan-1-ol (17). 
Purity 95% (GLC), bp 68–70°C (7 mm), d4

20 = 0.9346, 
nD

20 = 1.4820; MRD 47.04, calcd. 47.24; published data 
[22]: bp 105–109°C (10 mm). IR spectrum, ν, cm–1: 
3390, 1040 (OH), 3060, 1665, 820 (C=CH), 1375 
(CH3). 

1H NMR spectrum, δ, ppm: 0.81–0.98 m (6H, 
CH3), 1.09–2.21 m (8H, CH, CH2), 2.68 m (1H, OH), 
3.29 m (2H, CH2O), 5.33 m (1H, C=CH). Found, %:  
C 77.58; H 11.45. C10H18O. Calculated, %: C 77.87;  
H 11.76. 

(2-Isopropylcyclohex-1-en-1-yl)methanol (18). 
Purity 96% (GLC), bp 90–91°C (5 mm), d4

20 = 0.9517, 
nD

20 = 1.4930; MRD 47.10, calcd. 47.24. IR spectrum, ν, 

cm–1: 3370, 1040 (OH), 1665 (C=C). 1H NMR spec-
trum, δ, ppm: 0.91 d (3H, C10H3, J = 6.8 Hz), 1.50–
2.15 m (9H, OH, CH2), 1.65 s (3H, C7H3), 2.96 m  
(1H, CH), 3.44 m and 3.51 m (2H, CH2O). Found, %: 
C 77.43; H 11.58. C10H18O. Calculated, %: C 77.87;  
H 11.76. 

(2-Isopropylcyclohex-2-en-1-yl)methanol (19). 
Purity 92% (GLC), bp 85–87°C (5 mm), d4

20 = 0.9529, 
nD

20 = 1.4900; MRD 46.80, calcd. 47.24. IR spectrum, ν, 
cm–1: 3370, 1040 (OH), 1665 (C=C). 1H NMR spec-
trum, δ, ppm: 0.91 d (3H, C10H3, J = 6.8 Hz), 1.50–
2.15 m (9H, OH, CH2), 1.65 s (3H, C7H3), 2.96 m  
(1H, CH), 3.44 m and 3.51 m (2H, CH2O). Found, %: 
C 78.34; H 11.38. C10H18O. Calculated, %: C 77.87;  
H 11.76. 

The authors thank junior researcher T.N. Overchuk 
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