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Abstract—The traditional approach of the mean-field supersaturation to kinetic description of nucleation is based 
on assumptions that homogeneous nucleation of overcritical particles of a new phase in a closed system occurs 
uniformly over the volume of the system and is synchronous with a decrease in the mean supersaturation of the 
metastable phase. The approximation of the mean supersaturation field also implies that the transport of molecules 
of the metastable phase into the growing particles of the new phase is slow and stationary. We have found in this 
work that, in the diffusion regime of the particle growth, the approach of the mean-field of supersaturation at the 
end of the first stage of formation of overcritical droplets in a supersaturated vapor requires low volatility of the 
condensing liquid, and realizes in the case of the stage of nucleation of overcritical gas bubbles in a solution su-
persaturated with gas only at extremely low solubility of the gas in the solution. In particular, for condensation of 
water vapor and degassing ethanol supersaturated by gas with moderate or high solubility at atmospheric pressure, 
the approximation of the mean-field supersaturation cannot be strictly justified. We demonstrated here that there 
are no such restrictions when using the excluded volume approach in the kinetic description of the phase transition. 
Along with that we have shown, that the excluded volume approach describes fast self-similar diffusion growth of 
particles of a new phase at the nucleation stage, leading to the formation of a cellular structure at the next stage of 
the phase transformation, the stage of intense decrease in the supersaturation of the metastable system.

Keywords: nucleation, kinetics, droplets, bubbles, nonstationary diffusion, mean-field supersaturation, excluded 
volume approach

DOI: 10.1134/S1070363222040053

INTRODUCTION

Decay of a metastable phase during first-order phase 
transition is accompanied by formation (or nucleation) 
of particles of a new phase. Under conditions of 
rapid establishment of the initial metastable state in 
a closed system, the phase transformation proceeds 
through several stages [1–3]. We will be interested in 
this communication in the first stage called the stage 
of nucleation (with formation of spectrum of new-
phase particles of overcritical sizes and growth of the 
overcritical particles [2]) and the second stage called the 
stage of an intense collapse of the supersaturation of the 
metastable system [3].

The traditional approach to kinetic description of 
nucleation is based on the assumption that homogeneous 
nucleation of overcritical particles of a new phase in 
a closed system occurs uniformly over the volume of 
the system and is synchronous with decrease in the 
average supersaturation of the metastable phase [1–5]. 
This approach is called the mean-field supersaturation 
approximation. The mean-field supersaturation 
approximation also implies that the transfer of molecules 
of metastable phase into growing particles of new phase 
is stationary and proceeds rather slowly.

Below we will speak about nucleation and subsequent 
growth of overcritical liquid droplets in a supersaturated 
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vapor and overcritical gas bubbles in a liquid solution 
supersaturated with dissolved gas [6–8]. We will consider 
the growth of overcritical particles of new phase to occur 
due to the diffusion of the metastable substance. In the 
mean-field supersaturation approximation, the end of the 
nucleation stage is determined by the moment when a 
relative decline in the initial supersaturation leads to the 
decrease in the nucleation rate by e times. The condition 
for the applicability of the mean-field supersaturation 
approximation at the end of the nucleation stage is 
provided by smallness of the average distance between 
overcritical particles compared to the size of the diffusion 
clouds surrounding the particles. In this communication, 
we will show that this condition of the applicability of 
the mean-field approximation can be reduced to a very 
strong inequality, to provide which in the case of droplet 
nucleation in a supersaturated vapor, the low volatility 
of the condensing liquid is required, and in the case of 
the stage of nucleation of overcritical gas bubbles in a 
supersaturated gas solution, we need an extremely low 
solubility of the gas in the degassing solution.

To take into account the effect of concentration 
inhomogeneity and nonstationary diffusion of a 
metastable substance into the overcritical particle of new 
phase, we previously developed an approach [9–15] based 
on the concept of the formation of a volume excluded for 
nucleation during the diffusion growth of a such particle. 
The excluded volume approach takes into account that, 
due to a decrease in the concentration of the available 
metastable substance, the nucleation of new particles is 
strongly suppressed in the diffusion shell surrounding an 
already formed particle. In other words, a spherical shell 
of a metastable substance of certain thickness around each 
overcritical particle can be excluded from the region of 
nucleation, while in the rest of the metastable system the 
intensity of supercritical particles nucleation remains at 
the initial level. For a particle growing in a self-similar 
diffusion regime [16–19], the volume excluded from the 
nucleation process is proportional to the particle volume.

In the excluded volume approach, the end of the 
nucleation stage corresponds to the time at which the sum 
of excluded volumes for individual particles becomes 
equal to the volume of the initial metastable system. In 
this communication, we will show that this condition 
does not mean a significant overlap of diffusion shells 
and complete mixing of the metastable substance of the 
system to its quasi-homogeneity. This condition can be 

satisfied at any initial supersaturation of the metastable 
phase and at any nucleation growth rate.

Although in the case of rapid diffusion growth of 
overcritical particles, the end of the nucleation stage 
corresponds to the fact that the spherical layers related to 
the excluded volumes of individual particles come into 
contact with each other, the local supersaturations near the 
outer boundary of the excluded volume decrease slightly 
by the end of this stage. It can be assumed that after this, 
at the second stage of the phase transition, the stage of 
intensive absorption of the metastable substance, each 
overcritical particle grows due to the consumption of the 
metastable substance only from its own layer. Estimates 
in favor of this assumption will be presented in the third 
section of the article.

1. APPROXIMATION  
OF THE MEAN-FIELD SUPERSATURATION

Below, we restrict ourselves to the case of homogeneous 
formation of one-component particles of a new phase in a 
homogeneous metastable system. The expression for the 
rate J of homogeneous nucleation of new phase particles 
at any point of the metastable phase can be written [1–5] 
as

(1)

where C is the pre-exponential factor and ∆Fc is the 
minimal work of formation of an equilibrium (critical) 
particle expressed in thermal units kBT (kB is the 
Boltzmann constant, T is the absolute temperature of the 
system), which plays the role of the activation barrier for 
homogeneous nucleation. The quantities ∆Fc and C are 
functions of the supersaturation of the metastable phase ζ

(2)

(n is the bulk concentration of metastable substance 
molecules, nf is their concentration at equilibrium of 
the initial and new phases with a flat interface) and can 
change with time along with this supersaturation during 
the nucleation stage. The factor C is a slowly varying 
function of supersaturation ζ compared to exp(–∆Fc). 
Therefore, the dependence of the activation barrier ∆Fc 
on supersaturation ζ is more important in nucleation 
kinetics. For homogeneous nucleation of droplets and 
bubbles in the framework of the classical theory of 
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nucleation, we have the following expressions for the 
activation barriers [6]

We see from relations (8) and (9) that the quantity Г 
decreases with increasing supersaturation ζ0, but even at 
high supersaturations, when ∆Fc ≤ 100, we have double 
inequality 1 << Г ≤ 200, which justifies expansion (6).

In view of expansion (6), expression (1) for J(t) can 
be written as

( )
3

b
2 2

B

16πσ=  ,
3 ζc

l
F

k TP
∆

(3)

(4)

where the superscripts (d) and (b) hereinafter refer to a 
droplet and, respectively, to a bubble, σ is the surface 
tension at the flat gas–liquid interface, nl is the number 
density of molecules in the liquid droplet, and Pl is the 
bulk pressure in the liquid solution around the bubble. 
For the appearance of the first overcritical nuclei within 
a reasonable waiting time, the height of the activation 
barrier must satisfy the condition ∆Fc ≤ 100.

Let us define the relative diminution of the 
supersaturation with time by the relation

(5)

where ζ0 is the initial value of the supersaturation of the 
system (hereinafter, the subscript 0 indicates that the 
corresponding value was determined at the initial moment 
of time). Taking into account only constant and linear 
in φ(t) terms, ∆Fc(t) can be represented as an expansion

(6)

where

(7)

Taking into account the relations (3) and (4), we find 
for a droplet and a bubble in the framework of the classical 
theory of nucleation

(9)

(8)

(10)

where J0 = C0e–ΔFc,0. In the approximation of the mean-
field supersaturation, the condition determining the 
moment tl of the end of the nucleation stage is taken as

(11)

Taking into account definitions (2) and (3), we have

(12)

The change in the current amount of a metastable 
substance in the system equals V(n0 – n(t)), where V is 
the initial volume of the system. In view of expressions 
(8) and (9), the material balance conditions for the 
metastable substance at the end of the nucleation stage for 
condensation of vapor into droplets and for the degassing 
of the solution into bubbles can be written respectively as

(13)

(14)

where ng is the number density of molecules in a gas 
bubble at pressure Pl, Vl(tl) and Vg(tl) are the total volumes 
of overcritical droplets and, accordingly, overcritical 
bubbles by the end of the first stage of nucleation. 
Expressions (13) and (14) can be rewritten as

(15)

where

(16)

(17)
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s is the gas solubility.
The total volumes of droplets Vl(tl) and bubbles Vg(tl) 

can be represented as

where Dg and Dl are the diffusion coefficients in the gas 
and liquid phases, respectively. Since the radius of the 
diffusion cloud rD equals rD = (2Dt1)1/2 , then, in view of 
relations (21), we find

(18)

where 4π/3‹R3›t1 is the volume of the overcritical particle 
averaged over the size distribution, and N(tl) is the 
total number of overcritical particles by the end of the 
nucleation stage. As a consequence of expressions (15) 
and (18), by the end of the nucleation stage, we find that 
the average concentration of droplets in the vapor and 
bubbles over the solution volume is equal respectively to

(19)

Estimating the average distance –r(t1) between the 
particles of a new phase as

using relations (19), we obtain

(20)

The condition for the applicability of the approximation 
of the mean-field supersaturation is requirement of the 
smallness of the distance –r(t1) compared to the sizes of 
diffusion clouds surrounding overcritical particles. For 
a droplet and a bubble of the maximum size, which is 
reached by the end of the nucleation stage at the quasi-
stationary diffusion growth, we have

(21)

(22)

As follows from relations (20)–(22), the condition 
for applicability of the approximation of the mean-field 
supersaturation can be reduced to strong inequalities

(23)

The expression for the average cubic radius of the 
overcritical particle at time t has the form

(24)

Here f(R2,t) is the distribution function of the overcritical 
particles in square radii, which, in view of expressions 
(21), can be written as

(25)

Introducing the average value of the distribution 
function –f(t) by the expression

(26)

we have
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Since, according to relation (10), J(t) decreases 
monotonically with time, it is obvious that the function 
f(R2,t) is a monotonically increasing function of the 
variable R2. Accordingly, there exists a value R2 = R*

2(t) 
such that f(R2,t) <  –f(t) for R2 < R*

2(t) and f(R2,t) > –f(t) for 
R2 > R*

2(t). With this in mind, it is easy to verify that the 
integral term in the expression for ‹R3›t has a positive 
value, so that

Taking into account the explicit classical relations (8), 
(9) for Г(d), Г(b) and definitions (16), (17), inequalities 
(28) can be rewritten in the form of conditions for vapor 
supersaturation ζ0 and the saturated vapor concentration 
nf characterizing the volatility of the liquid in the 
case of droplet nucleation and the conditions for gas 
supersaturation ζ0 in solution and gas solubility s in the 
case of bubble nucleation:

Fig. 1. Illustration of the region of applicability of inequality 
(29) for the nucleation of droplets in a supersaturated vapor.

Fig. 2. Illustration of the region of applicability of inequality 
(30) for the nucleation of gas bubbles dissolved in a liquid.

(27)

Thus, by the time t1 of the end of the nucleation stage, 
we have

From here and from relations (23), the strong 
inequalities should be satisfied.

(28)

(29)

(30)

Figure 1 shows the surfaces of the left and right 
sides of inequality (29) as functions of the initial vapor 
supersaturation ζ0 and its concentration nf at equilibrium 
with the liquid phase. Figure 2 plots the dependences of 
the left and right parts of inequality (30) on the initial 
gas supersaturation ζ0 in solution and the gas solubility 
s. The temperature of the systems for both figures is  
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293 K. For calculations in Fig. 1, the values of the 
parameters for water were taken: nl = 3.34×1028 m–3,  
σ = 0.068 Nm–1. For calculations in Fig. 2, the parameters 
of ethanol as a solvent were taken: σ = 0.022 Nm–1,  
Pl = 105 Pa. As seen from Fig. 1, inequality (29) is satisfied 
only at sufficiently small values nf  < 2.5×1022 m–3, which 
are more than an order of magnitude smaller than the 
tabular value nf = 5.78×1023 m–3 for water. Note that at 
nf < 2.5×1022 m–3 and ζ0 < 3, according to relations (3), 
(8) and (16), we have ∆F(d)

c > 37.1, Г(d) > 42.8 and al < 
2.2×10–6, while the critical radius Rc = 2σ/[nlkBTln(1+ζ0)] 
of droplets satisfies the inequality Rc > 7.5×10–10m.  
Figure 2 shows that inequality (30) is satisfied only at 
extremely low values of gas solubility s < 3×10–9. Note 
that for s < 3×10–9 and ζ0 < 300, according to Eqs. (9) 
and (17), we have Г(b) > 98 and ag < 2×10–6, while the 
critical bubble radius satisfies the inequality Rc = 2σ/
(Plζ0) > 1.5×10–9 m.

Figures 1 and 2 illustrate that for typical values of 
the parameters for water and ethanol, which were taken 
to construct the left and right parts of inequalities (29) 
and (30), these inequalities cannot be satisfied within the 
framework of the classical theory, and the approximation 
of the average supersaturation field by the nucleation 
stage of supercritical nuclei is either not applicable or its 
applicability is very limited.

2. EXCLUDED VOLUME APPROACH

As noted in the Introduction, there is another approach 
to the theory of homogeneous nucleation that in the full 
extent takes into account the effects of concentration 
inhomogeneity and the nonstationarity of the diffusion 
of a metastable substance into the particles of a new 
phase. This approach is based on the idea of the formation 
of an excluded volume in the process of self-similar 
nonstationary diffusion growth [16–19] of overcritical 
particles of a new phase and is described in [9–15].

For a single overcritical particle of radius R growing 
in the self-similar regime, the value Vex(R) of the volume 
excluded from the nucleation process equals [9–15]

and does not depend on the size of the particle. In the 
self-similar mode of diffusion growth of a droplet or 
bubble, the parameter b determines the rate of their 
growth renormalized compared to (21):

(31)

where factor q is given by the expression

(32)

(33)

and is related to the parameters al and ag introduced in 
Section 1 by formulas (16) and (17) as

(34)

(35)

In the limiting case, when al
1/2

 << 1 or ag
1/2

 << 1, we 
obtain from expression (34) or (35)

Estimates for the dependence of the factor q on b were 
considered in [14].

The excluded volume is a volume of spherical layer 
surrounding the overcritical particle of a new phase. 
According to relation (31), the outer radius Rex(R) of this 
layer is equal to

( )3 3
ex 1 .R R R q= + (36)

Accordingly, the thickness ∆ex(R) = Rex(R) – R of this 
layer is

(37)

Let us compare this value with the thickness ∆D(R) of 
the diffusion layer surrounding the overcritical particle. 
Since the growth time of a droplet or bubble up to radius 
R is determined from expression (33), we have
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Using relations (37) and (38), (39) for the ratio ∆ex/∆D, 
at any values of the parameter b, we find in the general 
form

nucleation and an increase in gas solubility during bubble 
nucleation, the overlap of diffusion clouds at the end of 
the nucleation stage becomes less and less significant, 
and at sufficiently large b, this overlap is practically 
absent. In this case, the volume of the diffusion layer 
of the nucleus is close to the value of the corresponding 
excluded volume. In other words, the picture is radically 
different from that arising in the approximation of the 
mean-field supersaturation.

Everything that has been said in this section can be 
extended to the situation when the mode of self-similar 
non-stationary diffusion growth of overcritical particles 
of a new phase is itself establishing during the nucleation 
stage, i.e., the parameters b and q depend on the radius of 
the particle and reach their self-similar values by end of 
the nucleation stage. As shown in [20, 21], this can be the 
case when the Laplace pressure in overcritical gas bubbles 
is fully taken into account at high gas supersaturations 
and when bubbles are formed in a highly viscous liquid. 
A corresponding extension of the excluded volume theory 
was also made in [20, 21].

3. ENTERING THE STAGE OF INTENSE  
ABSORPTION OF A METASTABLE SUBSTANCE

At the second stage of the phase transition, the 
overcritical particles of new phase grow, intensively 
absorbing the excess of the matter of the metastable 
phase. The formation of new overcritical particles at this 
stage practically does not occur. The dynamics of this 
stage will, of course, substantially depend on the degree 
of diffusion nonstationarity, which is determined by the 
value of the parameter a. Being interested in the evolution 
of an ensemble of particles under conditions of strong 
nonstationarity, we will consider a system of bubbles, 
since the condition a >> 1, necessary for the significant 
role of nonstationarity, is relatively easily ensured in the 
case of degassing the solution.

As already noted, in the case of a strong nonstationarity 
of bubble growth, i.e., in a situation where the 
approximation of the mean-field supersaturation is 
obviously inapplicable, the end of the nucleation stage 
is reached to the moment when the spherical layers 
corresponding to the excluded volumes of individual 
bubbles come into contact with each other and practically 
do not overlap. As a consequence, it can be assumed that 
after this (at the next stage of intensive consumption of 
dissolved gas), each bubble grows due to the consumption 
of gas only from its own layer. If at the nucleation stage 

(38)

(39)

(40)

As we can see, the ratio ∆ex/∆D does not depend on 
the size of the particle.

In the approach with the excluded volume, the end 
of the nucleation stage corresponds to the time t1, at 
which the sum of the excluded volumes for individual 
overcritical particles becomes equal to the initial volume 
of the system V. The average distance –r(t1) between 
particles can then be estimated as –r(t1) ~ Δex(Rmax(t1)). 
Accordingly, we can assume –r(t1)/ ΔD(Rmax(t1)) ~ ε and, 
by the value of ε, to estimate the degree of overlapping 
of the diffusion clouds of individual particles by 
the end of the nucleation stage. In particular, in the 
limiting case of small values of b, we obtain for 
the factor q, as shown in [14], the value q ≈ Г/b >> 
1. Accordingly, in this case, taking into account the 
equality b ≈ a at small b, we have

(41)

As one can see, the sizes of diffusion clouds 
significantly exceed the distances between particles 
only if the condition Г1/3a1/6 << 1 is satisfied, which is 
equivalent to extremely stringent conditions (28) for 
the applicability of the approximation of the mean-field 
supersaturation. However, these conditions are not 
required under the excluded volume approach.

With an increase in the parameter b (i.e., with an 
increase in the rate of diffusion growth of overcritical 
particles of a new phase), which, according to Eqs. (34), 
(35) and (16), (17), is associated with an increase in the 
initial supersaturation of the system or an increase in 
the volatility of the condensed substance during droplet 
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the bubbles grow in a self-similar mode, then for any 
bubble having a radius R(t1) by the time t1 of the end of 
this stage, the outer radius ~R(t1) of such a layer should 
be assumed equal to

Comparing two expressions (45) and (47) for the ratio 
Vg(t2)/Vg(t1), we arrive at the relation

(42)

where α is a coefficient that depends on the degree of non-
stationarity of the diffusion flow of dissolved gas particles 
(depends only on the parameter b). By the time t2 of the 
end of the second stage, the dissolved gas concentration in 
the layer surrounding the bubble decreases to a value close 
to nf, and the bubble radius at this stage will increase from 
R(t1) to R(t2). The corresponding solute material balance 
condition for an individual bubble can be written as

(43)

or, taking into account relations (17) and (42), as

(44)

As a consequence, for the ratio of the total bubble volumes 
Vg(t1) and Vg(t2) we have the estimate

(45)

In the excluded volume approach, the total volume 
of bubbles Vg(t1) by the end of the nucleation stage was 
previously determined by the expression [14]

(46)

By the time t2 of the end of the second stage, almost 
the entire excess of the dissolved gas passes into bubbles, 
and this fact leads to the relation (n0 – nf)Vl = ngVg(t2) or 
Vg(t2) = aVl. Then, taking into account expression (46), 
we obtain

( )
( )

2

1
.g

g

V t
aq

V t
= (47)

(48)

Relation (48) allows us to rewrite equation (42) in the 
form

(49)

Taking into account expression (36) given in  
Section 2, we obtain from relation (49)

(50)

Thus, the idea that at the second stage of the phase 
transition each bubble grows, absorbing excess gas only 
from its nearest layer (the solution evolves as a cellular 
structure), is consistent with the solute balance condition.

CONCLUSIONS

In this communication, we have shown that the 
approximation of the mean-field supersaturation and 
stationarity of the diffusion growth of overcritical 
droplets in a supersaturated vapor or the diffusion 
growth of overcritical gas bubbles in a gaseous solution 
at the nucleation stage are either inapplicable, or their 
applicability is very limited by the extremely small values 
of parameters al and ag determined by the relations (16) 
and (17). Physically, these restrictions require a low 
volatility of the condensing liquid in the case of droplets, 
and an extremely low solubility of the gas in solution in 
the case of gas bubbles. Previously, it was assumed that 
the approximation of the mean-field of supersaturation 
and the stationarity of diffusion growth is more justified 
in the case of low supersaturations of a metastable 
system, but the estimates made in this work demonstrate 
the deterioration of the applicability of the theory with 
decreasing supersaturation. It is also shown in this work 
that kinetic description of phase transition based on the 
excluded volume approach is completely devoid of the 
limitations mentioned above. Such a description, allowing 
a significant nonstationarity of diffusion, leads to the end 
of the nucleation stage to formation of a cellular structure, 
which evolves at the next stage of intense depletion of 
the metastable system.
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