ISSN 1070-3632, Russian Journal of General Chemistry, 2015, Vol. 85, No. 11, pp. 2568–2570. © Pleiades Publishing, Ltd., 2015. Original Russian Text © V.L. Gein, S.N. Rogachev, A.A. Bobyleva, D.Yu. Apushkin, G.A. Veikhman, O.E. Nasakin, 2015, published in Zhurnal Obshchei Khimii, 2015, Vol. 85, No. 11, pp. 1826–1829.

Synthesis and Antihypoxic Activity of 5-Aryl-4-aroyl-3-hydroxy-1-[2-(2-hydroxyethoxy)ethyl]-3-pyrrolin-2-ones

V. L. Gein^{*a*}, S. N. Rogachev^{*a*}, A. A. Bobyleva^{*a*}, D. Yu. Apushkin^{*a*}, G. A. Veikhman^{*a*}, and O. E. Nasakin^{*b*}

^a Perm State Pharmaceutical Academy, Ministry of Health of the Russian Federation, ul. Polevaya 2, Perm, 614990 Russia e-mail: geinvl48@mail.ru

^b Ulyanov Chuvash State University, Cheboksary, Russia

Received April 27, 2015

Abstract—Reactions of 2-(2-aminoethoxy)ethanol with mixtures of an aromatic aldehyde and aroylpyruvic acid methyl ester have afforded 5-aryl-4-aroyl-3-hydroxy-1-[2-(2-hydroxyethoxy)ethyl]-3-pyrrolin-2-ones. Antihypoxic activity of the synthesized compounds has been studied.

Keywords: 5-aryl-4-aroyl-3-hydroxy-1-[2-(2-hydroxy)ethyl]-3-pyrrolin-2-one, antihypoxic activity

DOI: 10.1134/S1070363215110109

Search for substances enhancing the body resistance to negative environmental factors is a topical issue nowadays. Study of antihypoxic activity of pyrrole-2,3-diones derivatives is of interest, since representatives of this class exhibit nootropic activity [1], and combination of these two properties would be promising for practical applications.

We targeted at preparation of tetrahydropyrrole-2,3diones with a hydrophilic 2-(2-hydroxyethoxy)ethyl substituent at the position 1 of the heterocycle and at elucidation of the structural changes effects on solubility in water and antihypoxic activity of the obtained compounds.

Using the known method [2], we performed reactions of 2-(2-aminoethoxy)ethanol with mixtures of an aromatic aldehyde and methyl aroylpyruvate taken in equimolar ratio, in dioxane medium at room temperature. Under those conditions, 5-aryl-4-aroyl-3-hydroxy-1-[2-(2-hydroxyethyl)ethyl]-3-pyrrolin-2-ones 1–6 were obtained as the only reaction products (Scheme 1, Table 1).

Scheme 1.

 $R^{1} = 4$ -CH₃ (1, 3, 4), H (2), 4-Cl (5, 6); $R^{2} = 2,4$ -Cl₂C₆H₃ (1), 3-OHC₆H₄ (2), 3-pyridyl (3), 2-FC₆H₄ (4), 4-FC₆H₄ (5), 2-CH₃OC₆H₄ (6).

Comp.	Yield,	mn °C	Found, %			Formula	Calculated, %		
no.	%	mp, c	С	Н	Ν	Tormula	С	Н	Ν
1	61.5	215–217 (EtOH)	59.28	5.34	3.05	$C_{23}H_{25}Cl_2NO_5$	59.24	5.40	3.00
2	75.2	193–195 (EtOH)	65.80	5.54	3.68	$C_{21}H_{21}NO_6$	65.79	5.52	3.65
3	64.8	191–193 (EtOH)	66.05	5.70	7.35	$C_{21}H_{22}N_2O_5$	65.96	5.80	7.33
4	61.6	232–234 (EtOH)	66.08	5.47	3.50	C ₂₂ H ₂₂ FNO ₅	66.16	5.55	3.51
5	70.7	231–233 (EtOH)	60.14	4.55	3.29	C ₂₁ H ₁₉ ClFNO ₅	60.08	4.56	3.34
6	58.8	174–176 (EtOH)	61.22	5.15	3.17	C ₂₂ H ₂₂ ClNO ₆	61.19	5.13	3.24

Table 1. Physico-chemical parameters of compounds 1-6

Table 2. ¹H NMR (DMSO-*d*₆) data for compounds 1–6

Comp.	δ, ppm							
no.	$H_{Ar}\left(m\right)$	OH (s)	$C^{1}\underline{H}_{\underline{A}}H_{B}\left(m\right)$	$C^{1}H_{A}\underline{H}_{\underline{B}}\left(m\right)$	CH ₂ OCH ₂ CH ₂ OH (m)	other signals (s)		
1	7.20	11.90	3.80	2.80	3.40	2.35 (3H ¹ , CH ₃)		
2	7.25	11.90	3.80	2.80	3.45			
3	7.20	12.00	3.80	2.70	3.40	2.34 (3H ¹ , CH ₃)		
4	7.25	11.80	3.80	2.80	3.50	2.34 (3H ¹ , CH ₃)		
5	7.25	12.00	3.75	2.75	3.40			
6	6.80	11.70	3.80	2.70	3.35	2.35 (3H ¹ , CH ₃ O)		

The resulting compounds **1–6** were white crystalline substances, soluble in ethanol, dimethyl sulfoxide, and dimethylformamide and insoluble in water (Table 1).

The products structure was confirmed by the data of IR and ¹ H NMR spectroscopy (Table 2). ¹H NMR spectra of compounds **1–6** contained the signals of aromatic protons (6.80-7.25 ppm), two multiplets of enantiotopic protons of the methylene group at position 1 (2.75-2.80, 3.75-3.80 ppm), a multiplet of other methylene protons (3.35-3.50 ppm), and a singlet assigned to the hydroxyl group at position 3 of the pyrroline ring (11.70-12.00 ppm) (Table 2).

IR spectra of compounds 1-6 (Table 3) contained absorption bands due stretching of the lactam (1652–1696 cm⁻¹), ketone (1620–1632 cm⁻¹), enol (3096–3128 cm⁻¹), and alcohol (3400–3470 cm⁻¹) groups.

Solutions of all the obtained compounds revealed deep cherry coloration after treatment with alcoholic solution of iron(III) chloride. That reaction along with the spectroscopy data indicated existence of compounds 1-6 in the enol form.

All the synthesized compounds were assayed for antihypoxic activity. The results revealed the highest antihypoxic activity of compounds **4** and **6**. The results of 5-aryl-4-aroyl-3-hydroxy-1-[2-(2-hydroxyethoxy)ethyl]-3-pyrrolin-2-ones **1–6** assay under normobaric hypoxia conditions are shown in Table 4.

EXPERIMENTAL

¹H NMR spectra of the solutions in DMSO- d_6 were recorded using a Bruker AM-500 instrument at operat-

Table 3. IR spectral data for compounds 1–6

Comp.	v, cm ⁻¹						
no.	СО	CON	ОН	CH ₂ OH			
1	1620	1692	3096	3400			
2	1624	1696	3120	3470			
3	1624	1652	3112	3430			
4	1625	1682	3128	3450			
5	1632	1692	3118	3432			
6 1632		1664	3112	3470			
		1		1			

Exp. no.	Reference	1	2	3	4	5	6
1	25.00	30.00	32.00	22.00	32.00	26.00	32.00
2	26.00	25.00	28.00	24.00	31.00	28.00	34.00
3	25.00	24.00	25.00	21.00	28.00	24.00	30.00
4	30.00	23.00	29.00	23.00	30.00	25.00	29.00
5	22.00	20.00	35.00	25.00	29.00	27.00	31.00
6	29.00	24.00	30.00	25.00	33.00	29.00	32.00
Average	26.17	24.33	29.83	23.33	30.50	26.50	31.33
Confidence interval	23.10-29.24	20.91–27.76	26.23-33.43	21.62–25.05	28.54-32.46	24.54–28.46	29.50-33.17
% increase relative to the	reference group	-7.01	14.01	-10.83	16.56	1.27	19.75

 Table 4. 5-Aryl-4-aroyl-3-hydroxy-1-[2-(2-hydroxyethoxy)ethyl]-3-pyrrolin-2-ones 1–6 towards antihypoxic activity under normobaric hypoxia conditions

ing frequency of 500 MHz relative to internal TMS. IR spectra of the suspensions in mineral oil were registered with a SPECORD M-80 spectrometer. Melting points were determined using a Melting-PointM-565 apparatus. Elemental analysis was performed with a Perkin Elmer 2400 instrument.

5-Aryl-4-aroyl-3-hydroxy-1-[2-(2-hydroxyethoxy)-ethyl]-3-pyrrolin-2-ones (1–6). A solution of 0.05 mol of methyl aroylpyruvate in 10 mL of dioxane was mixed with equimolar amounts of an aromatic aldehyde and 2-(2-aminoethoxy)ethanol and incubated at room temperature during 1 day. The precipitate formed was filtered off, recrystallized from ethanol, and dried.

Antihypoxia activity was studied taking advantage of the model of normobaric hypoxia with hypercapnia [3]. The experiments were performed with white mice (18-20 g) kept under standard vivarium conditions. The tested compounds were injected intraperitoneally 30 min prior to the experiment at a dose of 100 mg kg⁻¹ as a suspensions with isotonic sodium chloride solution. Depending on the weight, the reference group

was injected with a required amount of 0.9% sodium chloride solution. Lifetime of the mice (in minutes) was determined.

ACKNOWLEDGMENTS

This work was financially supported by the Russian Science Foundation (project no. 15-13-10029).

REFERENCES

- 1. Mashkovskii, M.D., *Lekarstvennye sredstva* (Drugs), Moscow: Novaya Wolna, 2005.
- 2. Gein, V.L., *Tetragidropirrol- i tetragidrofuran-2,3-diony* (Tetrahydropyrrole- and Tetrahydrofuran-2,3-diones), Perm: PGFA, 2004.
- 3. Mironov, A.N., Bunyatyan, N.D., and Vasilieva, A.N., *Rukovodstvo po provedeniyu doklinicheskikh sredstv* (Guidelines for Pre-Clinical Studies of Drugs), Moscow: Grif i K, 2012.
- 4. Belen'kii, M.L., *Elementy kolichestvennoi otsenki farmakologicheskogo effekta* (Elements of Quantitative Assessment of Pharmacological Effect), Leningrad: Medgiz, 1963.