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Abstract—In the framework of the truncated Gutenberg–Richter distribution model, the problem of estimat-
ing the maximum possible regional magnitude M is considered. A new estimator of parameter M is proposed
based on the bias-corrected maximum likelihood estimate, for which an exact formula is derived in the form
of a finite sum of some functions of sample maximum μn. The new estimate is compared with some known
estimates of parameter M and its fairly high efficiency is shown. Using a similar technique, an estimate is
obtained of quantile QT(q) of the maximum earthquake magnitude in a given future time interval T. It is
shown that the distribution density of magnitudes is significantly distorted at the ends of the magnitude range
when using the model of magnitude perturbation by random errors.
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INTRODUCTION
The Gutenberg–Richter law for the distribution of

earthquakes in a given region has the following form
(Gutenberg and Richter, 1954; 1956):

(1)

where m is earthquake magnitude; m0 is the lower
recording threshold; N(m) is the average number of
the earthquakes with magnitudes above m on some
time interval; a, b are coefficients characterizing the
seismicity in a given region (b > 0). If we consider the
magnitude of an arbitrarily selected earthquake as ran-
dom value μ, then, after corresponding normalizing
and introducing a distribution function of magnitudes
F(m), we obtain the following relation from (1):

(2)

The distribution function F(m) has the form

(3)

For convenience, we will use natural logarithms
and exponential function. In this case, the distribution

function F(m) and distribution density f(m) specify the
following exponential law:

(4)

(5)
We will use parameter s reciprocal to β:

(6)
Parameter s is measured in the same units as mag-

nitude. From the statistical standpoint, parameter s is
somewhat more useful. The maximum likelihood esti-
mate for parameter s is the arithmetic mean of the
magnitudes over the sample. Accurately up to a multi-
plier, it has a standard χ2-distribution with 2n degrees
of freedom (where n is the sample size), which quickly
converges to the normal law. At the same time, the
estimate of quantity β reciprocal to s has a skewed dis-
tribution at small n and its convergence to the limiting
value can be accompanied by outliers, i.e. it is non-
robust. In this work, we consider the truncated Guten-
berg–Richter law (TGR):

(7)
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(8)

Parameter M is called the maximum possible
regional magnitude, and its estimation is the main part
of the paper. As we see, the TGR distribution has a
sharp cutoff at the right end, which cannot be consid-
ered fairly well substantiated from the physical stand-
point. Nevertheless, TGR is very widely used in seis-
mological practice. This is due to the fact that in the
main part of the magnitude range, this model retains
the self-similarity properties inherent in the classical
Gutenberg–Richter law, does not contradict finite-
ness of earthquake energy, and has only two parame-
ters.

ESTIMATING PARAMETER M
Estimation of the maximum possible regional mag-

nitude is an important issue in the problem of seismic
risk assessment (Kijko and Sellevoll, 1989;1992; Pisa-
renko, 1991; Kijko and Graham, 1998; Pisarenko et al.,
1996; Dargahi-Noubary, 2000; Kagan and Schoen-
berg, 2001; Kijko, 2004; Pisarenko and Rodkin, 2010a;
Zoller and Holschneider, 2016; Vermeulen and Kijko,
2017; Beirlant et al., 2019; Pisarenko et al., 2021). In
our statement of the problem, the maximum regional
magnitude is expressed by parameter M. The general
scheme proposed in this work for estimating parame-
ter M is following. Initially, we consider estimation of
parameters (М, s) by the standard likelihood method.
We denote the sample of magnitudes under study (the
catalog) by x = (x1, … , xn). The likelihood function has
the following form:

(9)

As is known (e.g., (Pisarenko et al., 1996)), the
maximum likelihood estimate for parameter M at any
value of s is the maximum magnitude of the observed
sample μn:

(10)
The maximum likelihood estimate for parameter s

is found as the likelihood maximum for the TGR dis-
tribution (9) in which parameter M is replaced by μn,
i.e, as the maximum of a function of s:

(11)

The obtained maximum likelihood estimate μn for
parameter M has a systematic, negative bias with
respect to the true value of parameter M, which is most
significant at moderate n. The exact formula for this
bias in the form of a finite effectively calculable sum is
derived in Appendix. This formula has the following
form
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(12)

where u = 1 – exp[–(M – m0)/s]; Wn = u +  + … + ;

Е denotes mathematical expectation. As can be seen,
the bias depends on the unknown parameter M. In the
estimator described in this work, it is proposed to
replace M by μn. Parameter s should be replaced by its
standard maximum likelihood estimate . Thus, the
new estimator  of parameter M corrected for bias
has the following form:

(13)

where  = 1 – exp[–(μn – m0)/ ];  =  +  +

… + 

Below, we generalize estimator (13) by adapting it
for the case of estimating the quantile Q(q) of TGR
distribution, i.e., the Q(q) value determined by the
equation

(14)

where q (the significance level of the quantile) is a
number from interval [0, 1]. The quantile is the inverse
function with respect to the function F(x). If the dis-
tribution function F(x) is continuous (which we
assume), then the quantile and the distribution func-
tion monotonically increase and are bijectively related
with each other. For TGR we have

(15)

where, as previously, u = 1 – exp[–(M – m0)/s]. For
quantile (15), we may derive an estimate by replacing
in (15) μn instead of М and  instead s. This estimate
has the bias

(16)

Using the same technique as we used when deriving
estimate , we find

(17)

where  =  +  + … + . Subtracting

from the estimate Q(q|μn, ) the right-hand side of (17)
with the unknown parameters М, s replaced by μn, ,
respectively, we obtain the final estimate of the quan-
tile Q(q|M, s):

(18)
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82 PISARENKO

Fig. 1. MSE for four estimates of maximum magnitude М
from synthetic catalogs (N = 10000); m0 = 6.0, M = 8.0,
s = 0.4. Truncation thresholds are МKtrunk and MPtrunk,
h = μn + 1. Circles are  estimate; squares are МKtrunk;
asterisks are Bayes estimates; dots are VPtrunk.
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where  = 1 – exp[–(μn – m0)/ ];  =  +

 + … + .

At q = 1, estimate (18) coincides with estimate (13)
for the maximum magnitude.

COMPARISON OF DIFFERENT ESTIMATES 
OF PARAMETER M

A wide range of estimates obtained by the principle
of moment-type statistical estimating are proposed in
(Kijko and Sellevoll, 1989; 1992; Kijko and Graham,
1998; Coles and Dixon, 1999; Kijko, 2004; Holschneider
et al., 2011; Kijko and Singh, 2011; Lasocki and
Urban, 2011; Zoller and Holschneider, 2016; Vermeu-
len and Kijko, 2017; Beirlant et al., 2019). To construct
these estimates, initially, the formula is written out for
the mean (or some higher moment) of some consistent
estimator that converges in probability to the true
value at n . For example,

(19)

Solving this equation with respect to M by different
approximate methods, one obtains a statistical esti-
mate of the unknown parameter M. As some modifi-
cations of this method, one can also replace M by μn in
the right-hand side of (19). We consider the version of
Eq. (19) proposed in (Kijko, 2004; Kijko and Singh,
2011) and denote the corresponding estimate of
parameter M by MK. This estimate is determined as
the solution of the transcendental equation (19) with
respect to M. It can be shown that this MK estimate is
not defined at all possible μn values. For μn values that
are quite close to M, Eq. (19) does not have a solution
and the theoretical mean square error (MSE) of the
MK estimate is infinite. Therefore, in order to com-
pare it with the MSEs of other estimators, we have to
truncate MK at some threshold h:

(20)

Let us consider another estimator of the maximum
magnitude M.

Pisarenko et al. (1996) proposed an unbiased esti-
mator of the maximum magnitude M which has the
smallest variance among all the unbiased estimators:

(21)

Unfortunately, estimator (21) has a rather high
variance. Therefore, we consider a truncated version
of this estimator:
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(22)

This modification of the estimator is quite eligible;
its MSE decreases (depending on the selected cutoff
threshold). But, naturally, a systematic bias appears;
however, it is not very high.

Let us compare the above four estimators of the
parameter M of maximum magnitude.

Figure 1 shows MSEs for the four above estimators.
The averaging was carried out using N = 10000 syn-
thetic catalogs with parameters m0 = 6.0, M = 8.0, s =
0.4, the truncation threshold for the estimates MKtrunk
and MPtrunk is h = μn + 1; the МKtrunk estimate is less
efficient than the other estimates for all n.

Figure 2 shows the biases for the four estimates of
the maximum magnitude M. The biases of estimate 
are lower by absolute value than biases of estimate
МKtrunk. The biases of the МKtrunk estimate are positive
whereas the biases of the  estimate are negative.

Figure 3 illustrates standard deviations of the four
estimates.

The comparison of the estimates is conducted for
the typical values of TGR parameters s = 0.4; M = 8.0;
m0 = 6.0. We also used other variants of the parameters
for the comparison. This yields somewhat different
estimates; however, these different variants suggest the
same conclusions as we obtained for the cited param-
eter values: estimate  is most efficient, the Bayes
estimate is close to it, and the МKtrunk estimate is least
efficient.
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Fig. 2. Bias for four estimates of maximum magnitude М
from synthetic catalogs (N = 10000); m0 = 6.0, M = 8.0,
s = 0.4, threshold is h = μn + 1. Circles are ; squares are
МKtrunk; asterisks are Bayes estimates; dots are MPtrunk.
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Fig. 3. Standard deviations STD for four estimates of max-
imum magnitude М from synthetic catalogs (N = 10000);
m0 = 6.0, M = 8.0, s = 0.4. Х-axis is n; Y-axis is STD. Cir-
cles are ; squares are МKtrunk; asterisks are Bayes esti-
mates; dots are MPtrunk; threshold is h = μn + 1.
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ESTIMATING THE QUANTILES 
OF THE MAXIMUM EARTHQUAKE 
IN A FUTURE TIME INTERVAL T

As noted above, in most practical situation, param-
eter M is estimated unstably because of the insufficient
number of observations in the range of strong earth-
quakes. Besides, it is unclear to which time interval
parameter M refers—one thousand years, or one mil-
lion years, or “for all the time.” Therefore, in (Pisa-
renko et al., 2008; 2010; Pisarenko and Rodkin, 2009;
2010a; 2010b; 2013; Zoller et al., 2013) it was proposed
to characterize the seismicity in the range of the stron-
gest events using quantiles QT(q) of level q of a random
variable—the maximum magnitude М(Т) of an earth-
quake in the future time interval T (in a given region).
Hereinafter we assume that the catalog is declustered
by one of known declustering methods (e.g., (Pisa-
renko and Rodkin, 2019)) and that it can be consid-
ered as a Poisson random process with some intensity λ
(the number of events per unit time in a given magni-
tude range). The mean number of events is λT, the
standard deviation from the mean is . The ran-
dom quantity М(Т) is correctly defined and, under
certain conditions, it is substantially more stable and
robust than the statistical estimates of parameter M.
Moreover, as a special case q = 1 and Т , it
includes the estimate of parameter M “for all the
time.” Below, we present formulas for estimating
quantiles QT(q) in the context of TGR model. These
formulas are derived by the same method as the above
formulas for estimating parameter M:

(1) We consider the maximum likelihood estimate
for QT(q) and denote it by (q). This estimate

λТ

→ ∞

T̂Q
IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 58 
depends on the sample’s maximum magnitude μn:
(q) = (q| μn).

(2) The (q|μn) estimate has a noticeable bias
which is particularly strong in the case of relatively
small samples:

This bias is a function of the unknown parame-
ter M. We denote this function by G(M):

The maximum likelihood estimate for bias G(M) is
G(μn).

(3) The resulting estimate for the quantile QT(q),
which we denote (q|μn), is obtained by subtracting
G(μn) from the estimate (q|μn):

(23)

In Appendix, formulas for (q|μn), G(μn) are
derived:

(24)

(25)
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Fig. 4. (а) Spatial distribution of earthquakes under study; (b) frequency–magnitude graph; m0 = 5.7, s = 0.482 (β = 2.075).
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Table 1. Estimates of parameter M

Estimate Estimate value  standard 
deviation

8.61 ± 0.28

MPtrunk 8.85 ±0.36 

MKtrunk 9.07 ± 0.50

Bayes 8.73± 0.29

±

M

EXAMPLE OF M ESTIMATING 
FROM REAL CATALOG

We consider the CMT catalog (1976–2015) for the
region of the Kuril Islands and Kamchatka between
(42.81°, 53.56° N) and (146.38°, 161.06° E).

The catalog was declustered using the algorithm
described in (Pisarenko and Rodkin, 2019). The lower
threshold of the complete recording of the events is
selected at magnitude m0 = 5.7. As the result, 158 main
shocks in the magnitude range m ≥ 5.7 are obtained.
The flow rate (intensity) of seismic events is λ =
3.9606 yr–1. The maximum earthquake m = 8.296
occurred on November 15, 2006 at 46.57° N, 153.29° E.
Figure 4a shows the spatial distribution of the analyzed
earthquakes and Fig. 4b shows their frequency–mag-
nitude relationship.

The results for the four above estimates of parame-
ter M are presented in Table 1.

We tested five variants of the “free parameters” of
the Bayes’ method and obtained a rather wide scatter
of estimates of parameter M and its standard devia-
tion–from 16 to 25% relative values. Such a scatter
means that in this case, the Bayes estimates of the
parameters rather strongly depend on the choice of the
a priori domain for the parameters. The scatter of at
most 10% could be considered tolerable. However, with
the selected values of the free parameters (the a priori
intervals for М, s and μn ≤ M  μn + 1; 0.25 ≤ s ≤ 0.75),
the values of the Bayes estimates proved to be close to
the new estimates introduced in this work, and we left
them for comparison.

Figure 5 shows the graph of the estimate of quantile
QT(0.95) ± std.

≤ 
IZVESTIYA, PHY
ESTIMATING THE STANDARD DEVIATION 
OF PARAMETER ESTIMATES

The variance and standard deviation of the above
estimators could be estimated by the same technique
as we used to estimate the bias. However, this yields
very complicated formulas, and we show here a sim-
pler and more universal way of estimation. The
method is based on the ideas of bootstrap estimates
(Efron, 1979). In some way, we build a model of the
observed catalog and then, using random numbers,
generate a substantial number of random catalogs
(e.g., 10000), based on which it is possible to estimate
the standard deviation of the estimators as accurately
as desired. As a model distribution, we propose the
TGR model in which the unknown parameters are
replaced by their maximum likelihood estimates. Of
course, the resulting estimates will differ from the
unknown true values, but these deviations will be, so
to speak, of the second order of smallness compared to
the standard deviation itself. In the case of large and
moderate sample sizes, they will be small and can well
be neglected. However, the use of this method in the
case of small samples needs a close control and addi-
tional research. We recommend to calculate several
SICS OF THE SOLID EARTH  Vol. 58  No. 1  2022
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Fig. 5. Graph of quantile estimate QT(0.95)  std. 
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Fig. 6. Probability density of TGR (heavy line) and TGR
with magnitude perturbed by random error, Δ = 0.5. TGR
parameters m0 = 6.0; M = 8.0; s = 0.5.
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variants of the models in which the parameter esti-
mates obtained by the maximum likelihood method
are subjected to small perturbations and to see how
strongly the estimates of the standard deviation will
change.

Using the above method, we estimated the charac-
teristics of the scatter of estimates shown in Figs. 3, 5
and presented in Table 1.

We note that on November 4, 1952, a strong earth-
quake occurred in the region of the Kuril Island arc at
52.623° N, 159.779° E. The magnitude of this event in
the different catalogs is estimated at 8.9–9.0. The
CMT catalog which we used in this study starts from
1976 and does not include this earthquake. However,
the magnitude of this earthquake falls within the scat-
ter limits of the estimates indicated in Table 1 and can
be assumed to not contradict these estimates.
IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 58 
The estimates of the maximum possible magnitude
of the earthquakes in the Kuril island arc determined
based on the regional tectonic characteristics generally
agree with the estimates presented in Table 1 (Tara-
kanov, 1990; Ermakov, 1997). For instance, the esti-
mate of the maximum possible magnitude from the
Riznichenko’s and Tarakanov’s nomograms yields
Mmax = 8.0–8.5 and Mmax = 8.6–9.5, respectively. As
noted in (Ermakov, 1997), Tarakanov’s estimates are
overrated because they disregard the division of the
Central Kuril block into the middle and transitional
parts.

MODELS WITH IMPRECISE MAGNITUDES
The TGR model is quite frequently used with some

“addition” (e.g., (Kijko and Sellevol, 1989; Lyubushin
and Parvez, 2010)), namely, assuming that the
“apparent” magnitudes ma published in the catalogs
are obtained from some “true” magnitude ma0 by add-
ing a certain random error ma:

(26)
The random error is assumed to be uniformly dis-

tributed on some interval [ .  is typically
assumed to be 0.2–0.5. This model is convenient in
that the probability density  for it is in a very
simple way expressed in terms of the original distribu-
tion function F(m):

(27)

Model (26)–(27) slightly smoothes the original
TGR model and this smoothing is most pronounced
at the ends of the magnitude range. It should be taken
into account that the use of the values on the order of

 implies that the true unknown parameter M
can differ from the observed one by . Besides, if the
presence of errors in the measurements of magnitude
is certain, the very notion of a “true magnitude” is
rather vague. For completeness of the discussion, we
should have compared the quality of fitting the simple
and smoothed TGR models to the catalog under
study. We will not go into the discussion on this issue
as it is beyond the scope of our paper but only resent
the density of the smoothed model and compare it
with that of the unsmoothed model (see Fig. 6).

It can be seen that the smoothed model fairly
noticeably distorts the truncated Gutenberg–Richter
law, especially at the left end of the range. This will
undoubtedly affect the estimate of parameter s (or β).

DISCUSSION AND CONCLUSIONS
In this work, the new method for estimating the

maximum possible regional magnitude M, con-
structed in the scope of the truncated Gutenberg-
Richter distribution (GGR) model, is proposed. Also,
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86 PISARENKO
the method for estimating the quantile QT(q) of the
maximum earthquake in a future time interval is
described. The exact formula for the bias of the esti-
mates of the maximum magnitude M and quantile
QT(q) in the form of a finite effectively computed sum
is derived. These biases are expressed in terms of the
incomplete beta-function with one of the arguments
equal to –1. The corresponding complete function
with this argument value is infinity. For the incom-
plete function (it is finite), it was possible to obtain the
exact formula in the form of the effectively calculable
sum (12), (17).

It is shown that the new estimate is on a par in effi-
ciency with the known common estimates of the max-
imum magnitude M and in some cases appreciably
outperforms them. Among all the known methods, it
is perhaps only the Bayesian method that can be con-
sidered comparable with the new one in efficiency
(although in the presented example it is slightly infe-
rior to the new method in terms of MSE). However,
the Bayesian method contains two “free parameters”
of the algorithm. These are the parameters of the a pri-
ori interval for β and M. In the case when the Bayesian
method uses magnitude perturbation (which is a very
frequent practice), then, in addition, the third param-
eter appears—the scale of perturbation. These two or
three parameters are frequently selected without a rea-
sonable discussion and substantiation, and the selec-
tion is based on the individual and intuitive consider-
ations as to which parameter value best fits the
author’s notions about the phenomenon under study.
At the same time, the new estimate does not depend
on any free parameters, and the procedure of its appli-
cation is defined unambiguously. In the Bayesian
method, a very important factor in the estimation of
the maximum magnitude M is the choice of the a pri-
ori interval for M. Whether the end of the a priori
interval is specified at (μn + 0.2), (μn + 1), or (μn + 1.5)
can strongly affect the result of the estimation of M.
Unfortunately, these details are typically not discussed
and the selection of the a priori intervals is not sub-
stantiated.

The Bayesian approach has a large place in the
problems of seismic risk assessment (Lyubushin, 2010;
Pisarenko et al., 1996; 2021; Pisarenko and Lyubushin,
1999; Lyubushin et al., 2002; Kijko, 2012; Zentner,
2020). One general note concerning the Bayesian
approach is following. In this approach, the unknown
parameters, in particular, parameter M, are consid-
ered as random variables whereas in the original prob-
lem they were assumed to be unknown quantities.
Among statisticians, there is no consensus about the
validity of this replacement. The use of random quan-
tities always implies an ensemble of the realizations (a
general population) in which these random quantities
are realized. For the Bayesian approach, however, this
is not always easy to do. If we consider the maximum
magnitude M, then, what is generally of interest is the
IZVESTIYA, PHY
maximum possible magnitude for a given particular
region rather than the population of the possible mag-
nitudes M (the discussion on this subject is presented
in (Kendall and Stuart, 1961; Pisarenko and Rodkin,
2021)).

In one of the early works, Pisarenko et al. (1996)
proposed an unbiased estimate of the maximum mag-
nitude M which has the least variance among all the
unbiased estimates:

(28)

This estimate can be derived from Tate’s general
results (Tate, 1959; see also (Kendall and Stuart,
1961); however, in these works this estimate is
obtained in a complicated way using integral equa-
tions whereas Pisarenko et al. (1996) presented a sim-
ple and transparent derivation. A valuable property of
estimate (28) is that it has a zero bias and it should be
used in the problems of seismic risk assessment where
the systematic bias is more important than the random
scatter of the estimate. Unfortunately, estimate (28)
has a rather large variance so that its MSE is higher
than in many other estimates. Above, we used the
truncated version of estimate (28). It is quite compet-
itive, its MSE decreases (depending on the selected
truncation threshold), but, naturally, a systematic bias
emerges.

In the author’s opinion, the most effective estima-
tors for the parameter of maximum magnitude M are
two methods: the new estimate  introduced in this
work (13), (17) and the Bayesian estimate. Both these
estimates can be recommended for use (with the sub-
stantiated selection of the Bayesian “free parameters,”
it is advisable to preliminarily test several variants of
the Bayesian free parameters). The additional, quite
important information about the maximum possible
shocks is provided by the quantile estimate QT(q)
described above.

Of course, the methods for estimating the maxi-
mum possible magnitudes are not limited to TGR in
which context we considered the issue in this work. To
solve this problem, also more complex models that
take into account different details in the behavior of
the tail of magnitude distribution are proposed (e.g.,
Pisarenko et al. (2020) developed a composite model
of the frequency–magnitude relation of the earth-
quakes using extreme value theory (Gumbel, 1958;
Embrechts et al., 1997; De Haan, 2006)). More com-
plex models need more strong events for the detailed
description of tail distributions; however, this is not
always possible in the specific practical tasks. Thus,
the TGR model which is just intended for working
with relatively few strong events will be in demand for
a long time.

( )
= μ +

� 1 1  .
μ μ ,β  n

n n

M
n f

M
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APPENDIX

We consider function

The integral in the right-hand side can be trans-
formed in the following way. We introduce new variable

and denote

Thus, we obtain
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