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Abstract⎯The flow structure induced by thermal convection in a rotating spherical shell with viscous bound-
ary conditions is considered under the assumption that the differential rotation of the core relative to the man-
tle is absent. The radial, azimuthal, and meridional components of the f low’s velocity and helicity are stud-
ied. With the magnetic field assumed to be frozen into a liquid (frozen-flux hypothesis), it is shown that the
numerical results fit the observations of the geomagnetic field variations close to the pole.
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INTRODUCTION
The first results of three-dimensional (3D) numer-

ical geodynamo simulations in which the generated
magnetic field had a quasi-dipole structure similar to
that observed on the surface of the Earth were pub-
lished in 1995 (Glatzmaier and Roberts, 1995). The
generation of the magnetic field in the presence of
thermal convection in a rotating spherical shell filled
with a conductive liquid was studied. The geometrical
parameters of the shell corresponded to the Earth,
whereas the classical similarity criteria, despite being
significantly different from the Earth’s geometrical
parameters in magnitude, were selected in such a way
as to reproduce a magnetic field similar to the geomag-
netic field.

One of the predictions made by these calculations
concerned the superrotation of the conductive inner
core of the Earth due to the action of the electromag-
netic torque of the geomagnetic field: the magnetic
field, frozen into both a solid core and “thermal wind”
(eastward f low close to the solid core), will entrain the
solid core in the direction of the f low. The differential
rotation of the inner core and the mantle results in the
formation of the so-called tangential cylinder—a
cylindrical surface with the generating lines tangential
to the inner core on its equator. The axis of the cylin-
der coincides with the rotational axis of the shell and
its radius is equal to the radius of the inner core. This

cylinder is a consequence of the formation of Shercliff
layers. As a result, the liquid becomes subdivided into
domains above/below the inner core and the remain-
ing part—beyond these domains. Importantly, the
convection in these domains has different properties.
At the onset of convection, the f lows are concentrated
beyond the tangent cylinder; however; at higher Reyn-
olds numbers, the f lows penetrate into the cylinder. In
some models, e.g., (Glatzmayer and Roberts, 1995), a
specific f low structure develops in the vicinity of the
rotation axis, i.e., inside the cylinder. This structure
consists of the eastward jet close to the solid core and
the opposite (westward) jet near the boundary
between the liquid core and the mantle. It should be
noted that this structure is not always observed
(Kuang and Bloxham, 1997). In the latter case, the
boundary conditions were nonviscous, which proba-
bly caused the difference from the calculation of
(Glatzmayer and Roberts, 1995).

It is believed that the structure of the f low close to
the pole of the rotating spherical shell is determined by
the thermal wind in the vicinity of the solid core, the
subsequent upwelling and spreading of the f low at the
boundary of the liquid core and the mantle (Olson and
Aurnou, 1999; Reshetnyak and Pavlov, 2016). With
the assumption of the frozen-flux hypothesis, it can be
expected that due to the spreading of the conductive
liquid close to the pole on the core–mantle boundary
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(CMB), the radial component of the magnetic field on
the Earth’s surface would be reduced, and this was
actually observed by Olson and Aurnou (1999). This
flow structure is yet another result of the numerical
simulation not previously known. We note that directly
at the pole, even a weak reversed magnetic field is
observed. At the same time, the role of this polar f low
in the generation of the geomagnetic field is still
unclear. Therefore, the generation and evolution con-
ditions of the polar f low in the rotating spherical shell
need further study.

In this work, we consider the structure of the polar
flow induced by thermal convection in a rotating
spherical shell with viscous boundary conditions but
with the assumption that the differential rotation of
the core and mantle is absent. This assumption will be
substantiated in the discussion of the obtained results.
The discussion also involves the questions of the gen-
eration of the geomagnertic field (geodynamo).

MATHEMATICAL MODEL
We assume that the material motion of the liquid

outer core of the Earth is described by the system of
equations for a viscous ideal gas (Landau and Lifshits,
1986) in the spherical coordinate system  where
the conversion to the Cartesian coordinates  is
prescribed by the formulas ,

, and , where ,
 and :

(1)

Here,  is time,  is gas density, is pressure, is spe-
cific (mass) internal energy, is total specific energy,

is total specific enthalpy,  is velocity of gas with

( , , )r ϕ ψ
( , , )x y z

= cos cosx r ϕ ψ
= sin cosy r ϕ ψ = sinz r ψ 0r ≥

[0;2 )ϕ ∈ π [ 2; 2]ψ ∈ −π π

2

2

2

2 2 2

2 2

1 1 = ,
cos
= ( , , , , ) ,

= ( , , , , ) ,

= ( , , , , ) ,

= ( , , , , ) ,
2 tan

2 tan
3 2 tan=

3 ( ) tan
(2 tan )

g

T

T

T

T

t r r r
u w E

u u p u uw uH

u p w H

w wu w w p wH
u w

u w uw
u w

r
uw w

u w H

σ
∂ ∂ ∂ ∂+ + + + +
∂ ∂ ψ ∂ϕ ∂ψ

ρ ρ ρ ρ ρ
ρ ρ + ρ ρ ρ
ρ ρ ρ + ρ ρ
ρ ρ ρ ρ + ρ

− ψ⎛

− − − ψ
ρ − ψ−

− − ψ
− ψ

q F G H R R R

q

F

G

H

R

v

v

v v v v v

v

v

v v

v

2

,

0
(div )
(div )= , = ( 1) , = 2,
(div )
div( )

= , = ( , , ).

r

p E

H E p u w

φσ

ψ

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟

γ − ρε ε +⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

+ ρ

R v

v
v v

σ
σ
σ
σ

t ρ p ε
E

H v
IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 54 
the components  in the local orthonormal basis
of the spherical coordinates , is the adia-
batic exponent, is the iscous stress tensor, and is
the specific (volumetric) gravity force.

The components of the viscous stress tensor  in
the spherical coordinates have the following form
(Kochin, 1965):

Here, is the coefficient of dynamic viscosity,
is the coefficient of kinematic viscosity, and

, where is the coefficient of the second
viscosity, hereinafter, assumed to be zero. The compo-
nents of vector  in the system of Eqs. (1) can be
written out in the following form:
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Let us find the stationary cylindrically symmetric
solution of system (1). We assume that

Here, is the constant angular velocity of gas rota-
tion. We note that with the adopted assumptions

 and  (at ). We also
assume that the free-fall acceleration  is directed
towards the center of the spherical coordinate system;
then,  and ; i.e., it is only
radius dependent, where the given function  has
the antiderivative . Under these assumptions, the
system of equations (1) takes on the following form:

, .

Let us find the solution of these equations assuming
power-law pressure dependence on density ,

, and . Finding this solution is
reduced to integrating the system of equations

, 

.

From the second equation,

where  is the arbitrary function of variable .
Hence, considering the first equation, we obtain
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We note that the value  corresponds to the
constant distribution of temperature  with a spatially
stationary configuration. Then, from the equation of
state  where is the gas constant, we obtain
the linear density dependence for pressure  and

. In this case, in a similar way, we
obtain the following equilibrium density distribution:

Currently there are different models describing the
structure of the Earth. At the same time, only a few
parameters of the Earth are known, in particular, the
radius  m and angular velocity

 s–1. It is believed that the liquid core
occupies the domain  where  m
and  m. The material parameters of the
liquid core at these distances from the center are
approximately determined with the use of various
models and experiments. In particular, temperature,
pressure, and density are estimated at

(3)

The free-fall acceleration at the external boundary of
the liquid core is estimated at  m/s2 and
decreases to zero towards the center of the Earth with
a decay pattern assumed to be linear. Hence,

 and .

In order for the equilibrium distribution (2) to
approximately fit values (3), we selected the following
parameters: , , , and . The
gas constant was specified by  m2/s2 K.

The calculations described below were conducted
in the mobile coordinate system rotating at a constant
angular velocity  around the axis . In
this case, the right-hand side of Eqs. (1) additionally
contains the noninertial centrifugal and Coriolis
forces:
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For the subsequent analysis, it is convenient to
make the problem dimensionless. To do this, we select
the following scaling factors:

, ,

, .

We introduce the dimensionless variables, hereinafter,
marked by a prime sign, according to the following
formulas:

, , , , 
, , ,

, .

Let us express coefficients  and R0 in terms
of the selected scaling factors:

, ,

, , .

Then, system (1) in the dimensionless variables pre-
serves its original form. Hereinafter, only these vari-
ables are used and the prime mark in their designa-
tions is omitted.

NUMERICAL RESULTS
The calculations described below are based on the

explicit conservative Godunov-type difference
scheme (Godunov, 1959; Godunov and Zabrodin,
1961) in which the grid f lows of the first-order approx-
imation were calculated by Roe’s method (Roe, 1986)
with Einfeld’s modifications (Einfeld, 1988) to avoid
nonphysical breaks in the numerical solution. Osher’s
grid f low correction (Chakravarthy and Osher, 1985)
implemented in the computations raised the approxi-
mation order of the scheme to 3. The technique for
adapting this scheme for the case of spherical coordi-
nates and for allowing for the viscous stress tensor is
described in detail in (Abakumov, 2015).

The calculations were conducted within a bounded
domain of the spherical coordinates , with

 and . At the domain boundary, no-slip
conditions were imposed: , 
(in a rotating coordinate system). The initial data were
specified by the equilibrium configuration with the
parameters described in the previous section. The
kinematic viscosity  was set to be constant and its
dimensionless value in the different variants of the cal-
culations varied from  to . With the dif-
ferent viscosity values from this range, no significant
distinctions appeared in the numerical results. Both
the two-dimensional (2D) and three-dimensional
(3D) calculations were carried out. In the 2D cases,
the calculations were conducted in one layer of the dif-
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ference cells with a fixed polar angle and assumed
cylindrical symmetry of the f low. The three velocity
components were calculated and a 3D grid was used.
We note that in the course of simulations, the 3D cal-
culations did not differ from their 2D counterparts;
i.e., a heterogeneity of the f low in terms of the polar
angle did not develop. This allowed us to manage with
a 2D approximation for most variants of the numerical
simulation.

Let us now focus on the characteristic numerical
results. At the initial modeling stage, the starting equi-
librium configuration does not undergo any signifi-
cant changes. The velocity components do not notice-
ably deviate from zero. However, the situation changes
by the time . Here, the vortices arise close to
the inner boundary of the calculation domain, which
is reflected in the emergence of heterogeneities in all
the velocity components. Note that the dimensionless
time unit is about 316 s and T = 273 approximately
corresponds to one day.

Figure 1 shows the lines of the component values
and the vectors of gas velocity for the time T = 540.
The diagrams clearly demonstrate the characteristic
jets directed from the inner boundary of the calcula-
tion domain to its periphery. The presence of the vor-
tex motion can be inferred from the existence of the
adjacent regions having opposite signs of the meridio-
nal velocity component.

The emergence of the jets is concomitant with the
deviation of the gas rotation velocity from the initially
constant value. These deviations are most significant
in the vicinity of the rotation axis. Here, the rotation of
the gas speeds up close to the inner boundary and
slows down close to the outer boundary (Fig. 1).

It is worth noting that the jets do not reach the
outer boundary of the domain: they almost completely
lose their intensity after passing about 2/3 of the dis-
tance between the boundaries. A weak backflow takes
place, and, due to the viscosity, the f low tends to
regain its undisturbed state. However, the new vortices
emerge close to the boundary, and the process recurs
on a quasi-periodic basis (Fig. 2, T = 990).

We note that although the symmetrical jets com-
mence near different segments of the inner boundary,
their intensity is highest in the vicinity of the rotation
axis (Fig. 2). With the emergence of the jets, the f low
helicity  in the respective regions becomes
nonzero. The lines of the helicity values for time T =
540 and T = 990 are shown in Fig. 3. It can be seen that
the helicity is higher at the higher intensity of the jets.

Concluding this point we note that the described
quasi-periodic character of the f low was preserved
during the entire calculation time T = 4000.

DISCUSSION AND CONCLUSIONS
Let us briefly summarize the results yielded by the

numerical simulation of a rotating spherical shell with

400T ≈

( curl )⋅v v
 No. 3  2018
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Fig. 1. Velocity components at T = 540. From left to right: radial, azimuthal, meridional.
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Fig. 2. Velocity components at T = 990. From left to right: radial, azimuthal, meridional.
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Fig. 3. Helicity at T = 540 (left) and T = 990 (right).
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the main focus placed on the vicinity of the rotation
axis.

(1) The radial component of the f luid velocity in
the vicinity of the rotation axis shows a large-scale
upwelling motion slightly deviating from the axis,
whereas on the rotation axis itself, a backflow (towards
the inner shell) is predominant. After the f low pattern
collapses, the structure tends to get restored, and the
upwelling along the rotation is predominant; however,
with the lapse of time, the upwelling fades and a weak
backflow appears in the vicinity of the axis. (We note
that quasi-periodicity in the recurrence of the f low
pattern was observed in all the velocity components
and had not been noted previously).

(2) The azimuthal component of the f luid velocity
corresponds to the structure of the f low where, in the
vicinity of the inner shell, the velocity is directed east-
wards, whereas at the boundary between the outer
shell and the liquid (close to the projection of the inner
sphere onto the outer sphere), the velocity is directed
westwards. Thos f low pattern is also unstable, and
after collapsing it tends to recover. Here, at the lati-
tudes higher than the projection of the inner sphere
onto the outer sphere, the east–west jets alternately
emerge and disappear. The pattern generally resem-
bles torsional oscillations in the polar latitudes.

(3) The meridional component of the f low velocity
under a mature upwelling is directed from the rotation
axis in the vicinity of the boundary between the liquid
IZVESTIYA, PHYSICS OF THE SOLID EARTH  Vol. 54 
and the outer shell. This f low pattern overall can be
again reproduced after collapsing; however, the
smaller scale features appear.

Let us see now, how the numerical results could fit
the processes in the liquid core of the Earth.

The differential rotation of the Earth’s solid core
and the mantle has been initially identified based on
the 30-year time series of the travel time data for the
seismic P-waves passing through the inner core (Song
and Richards, 1996). It was concluded that the core
rotates 1° per annum faster than the mantle. In (Vidale
and Earle, 2000) the latter value was reduced to ~0.16°
per annum. The broad scatter in the estimates of the
differential rotation can be caused by the sensitivity of
the body waves to local heterogeneities in the structure
of the inner core (Laske and Masters, 1999). Therefore,
the authors of the last work proposed an alternative
method using the large-scale split modes of the free oscil-
lations of the Earth which, in contrast to the short-period
seismic oscillations, are independent of the position of the
radiation source and insensitive to small-scale heteroge-
neities. Based on the data for a 20-year period, we esti-
mated the average difference /yr,
which probably constrains the maximal value of  so
that . If, following (Laske and Masters,
1999), we only take into account the superrotation of the
core, we obtain the constraint /yr or

 s–1 (which testifies to the fairly

= 0.01 0.21ΔΩ ° ± °
ΔΩ

0.2 0.3ΔΩ ≤ °− °

= (0.01 0.3)ΔΩ − °
10= (0.06 1.8) 10−ΔΩ − ×
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472 ABAKUMOV et al.
high viscosity of the inner core (Shalimov, 2005)).
Taking into account the scatter in the determination of

 suggests the conclusion about the absence of the
rotation of the core relative to the mantle (Laske and
Masters, 1999). Following this conclusion, we assumed
the absence of the rotation of the core relative to the
mantle in the calculations in the present work.

As was noted in the introduction, assuming the fro-
zen-flux hypothesis, we may expect the reduction in
the radial component of the magnetic field on the
Earth’s surface due to the spreading of the conductive
liquid close to the pole at the core–mantle boundary.
In this case, a weak field of the reversed polarity is
observed directly at the pole. The numerical results
(point (1), the f low structure reflected in the radial
component of the velocity) are fairly consistent with
the observations.

As is known, vast magnetic anomalies, which
reflect the state of the magnetic field on the surface of
the liquid core, i.e., at the core–mantle boundary, are
observed on the Earth’s surface. This refers to patches
of a high-intensity magnetic field (four patches over-
all), approximately symmetric about the equator and
centered at the intersection of the parallels (60° N and
60° S) and meridians (120° E and 120° W, respec-
tively). In the northern hemisphere, these patches are
centered in Siberia and North America. These anom-
alies were detected for the first time by processing the
historical observations (Bloxham and Gubbins, 1987;
Johnson et al., 2003) and subsequently validated and
refined by the observations of the satellite missions
Magsat 1980 and Oersted 2000 (Hulot et al., 2002).
With the assumption that the geomagnetic field lines
are frozen into a liquid, the observations suggest the
following conclusion: the f low on the surface of the
liquid core is a system of four large-scale vortices. It
turned out that these vortices are drifting westwards
(Olson and Aurnou, 1999), and this conclusion was
supported by the later high-resolution satellite obser-
vations (Hulot et al., 2002). The latest conclusion
inferred from the Swarm satellite data for 2000–2016
(Livermore et al., 2016) indicates the presence of a
nonaxisymmetric large-scale westward jet close to the
projection of the tangent cylinder onto the Earth’ sur-
face, and this jet includes and accelerates the men-
tioned vortices. Interestingly, Libvermore et al. (2016)
consider it possible that, firstly, the jet may change its
direction and, secondly, the jet serves as a source of
torsional oscillations in the liquid core.

Hence, the results of the model calculations are
soundly supported by the observations of the magnetic
field close to the pole (point 2).

Let us consider the probable role of the azimuthal
velocity shear (along the altitude) in the generation of
the geomagnetic field. In the presence of the dipole
component of the poloidal magnetic field, the shear
flow will lead to the -effect—a strong axisymmetric
toroidal component within the imaginary tangential

ΔΩ

Ω
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cylinder. It can be expected that close to the core the
azimuthal field will partially suppress the turbulent
convection. Therefore the turbulence area will be con-
centrated close to the liquid core–mantle boundary
and will be a source of helical waves (inertial or mag-
netostrophic). The propagation of these waves
through the area of the azimuthal field may lead to the

-effect—generation of the poloidal component of
the field from the azimuthal component. Hence, the

-  geodynamo mechanism capable of maintaining
the dipole component of the geomagnetic field is
probable. We note that using the frozen-flux hypothe-
sis in the analysis of the  effect is, strictly speaking,
illegitimate. The corresponding magnetohydrody-
namic calculation will be presented in a future work.
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