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† INTRODUCTION

The deflection of the plumb line (the deviation of
the direction of actual gravity from the vector of nor�
mal gravity) arises because the actual gravity field of
the Earth, which reflects all the complexity of the
Earth’s interior and figure, differs from the normal
field. In order to calculate the deflection of the plumb
line (PLD) in the different points of the Earth, it is
required to know the spatial distribution of the anom�
alous gravitational field, i.e., to have the gravimetry
data.

In many regions of the world, gravity surveying
directly on the Earth’s surface is barely practical or
even impossible. The detailed marine geophysical sur�
veys are traditionally carried out from the ships; how�
ever, these projects are quite expensive. The airborne
geophysical surveys are less expensive and suitable for
assessing the mineral potential of the particular hardly
accessible regions. At present, the inertial corrections
are determined as accurately as within 1 mGal. For
calculating the PLD, it is required to have the maps of
gravity (mainly, of a scale of 1 : 200000) on the surface
of the reference ellipsoid rather than at the altitude of
the measurements (flight).

The ultimate objective of any airborne geophysical
survey is to digitally describe the studied field on the
Earth’s surface (on the selected ellipsoid). For obtain�
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ing this digital description, certain approximations of
the physical fields of the Earth are applied. Using the
gravimetry data, one can then determine the quasi�
geoid height and calculate the PLD components.

Boyarsky et al. (2010) suggested an efficient algo�
rithm for determining the PLD from the data on the
anomalies of gravity. A remarkable feature of this
approach is a simple procedure of allowing for the far
zone effects in the calculations of PLD.

The purpose of the present paper is to refine and
improve the technique for calculating the PLD, which
was suggested in (Koneshov et al., 2007) by incorpo�
rating the results of the airborne gravity measurements
over the hardly accessible regions. Besides the way of
calculating the PLD with the use of S�approximations
described in (Koneshov et al., 2007), in the present
paper we also present the results of testing the method
of R�approximations in two practical examples
(two regions in the Atlantics).

The need for designing the refined (universal)
method is dictated by two factors. First, the map of
gravity anomalies based on the results of the airborne
gravity survey is initially determined for the flight alti�
tude, because this map is constructed in the coordi�
nates of the GPS observations relative to the ellipsoid.
Second, when calculating the PLD in the barely
accessible regions with the rugged topography, one
should allow for the terrain effects using the algo�
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rithms that are most adequate for the criteria of uni�
versality of the calculations.

THE APPROXIMATION 
OF THE ANOMALOUS POTENTIAL FIELDS

In a number of the methods that are currently used
in the interpretation of the gravity and magnetic mea�
surements, certain approximations of the anomalous
geophysical fields are suggested.

The approximation of the Earth’s gravity field by
the segments of the solid spherical harmonic series
has become very popular since the middle and end
of the 20th century. Extensive research in this field
was carried out by scientists in Russia and abroad
(Naidu, 1968; Balmino et al., 1990). Since the
1950s, the interpretation of gravity and magnetic
anomalies has come to widely use the methods of
spectral analysis (Serkerov, 1991; etc.). The
present�day theories of interpretation of the geo�
physical data have a common drawback: they use
some idealizations, which do not comply with the
regularities observed in the nature or with the exper�
imental investigation of the studied fields. As the
examples, we cite the idealizations of the
two�dimensional field and a plane boundary
between the solid Earth and the air, specifying a cer�
tain element of the field in the nodes of a regular grid.

The suggested methods of S� and R�approxima�
tions comply with the real geophysical practice and are
free of the idealizations listed above. The methods of
S� and R�approximations are the modifications of the
method of linear integral representations suggested by
V.N. Strakhov (1999).

Based on the method of the linear integral repre�
sentations (Strakhov and Stepanova, 2002a; 2002b),
one can construct the linear analytical approximations
of the anomalous potential fields and the functions
describing the topography of the terrain, calculate the
linear transformations of the fields, and solve other
problems of the interpretation type.

It is worth noting that most of the transformation
procedures (analytical extension of the field towards
the disturbing masses, recalculation of the field into
the higher�order derivatives of the potential) that have
the highest resolution are unstable.

To date, a wide range of the methods for transfor�
mation of the potential fields has been suggested.
These methods are extensively published in the geo�
physical literature. Most of the existing methods have
a common drawback: they are inadequate for the real
geophysical practice because of the series of the
embedded idealizations such as the disregard of the
irregular pattern and different heights of the gravimet�
ric networks and many others.

We applied computer�aided technologies for con�
structing the analytical approximations of the anoma�
lous gravity and magnetic fields, as well as the terrain
topography in the local version in the rectangular Car�
tesian coordinates. These technologies are based on
the representation of the anomalous field in terms of
the potentials of the simple and double layers distrib�
uted on certain surfaces. We considered the problems
with relatively few points (at most 10000). Therefore,
the arising systems of the linear equations (SLAEs)
were solved by three methods: by the methods of
M.M. Lavrent’ev, by the regularization of the
Cholesky decomposition, and by the iterative method
developed by Strakhov. In the examples with a larger
number of points (~15000–30000), the SLAEs were
solved by two modifications of the block�coordinate
descent method (Strakhov, V. and Strakhov, A., 1999a;
1999b; Strakhov and Stepanova, 2001).

S�APPROXIMATION: LOCAL VERSION

Knowing the components of the magnetic or grav�
ity field (e.g., the first derivative of the potential with
respect to z on a certain surface topography above the
physical surface of the Earth), we can represent the
potential of the field as a sum of a simple and dou�
ble layers, which are formed by a horizontal plane
located below the given relief (Koshlyakov et al.,
1962):

(1)

We select the coordinate system in such a way that
the plane of the simple and double layers is described
by the equation z = 0. Then, the derivative with respect
to z of the potential V taken with the opposite sign has
the following form:
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the integrand function in the first term of (2) at point Мi

by  and in the second term, by  Then, we obtain

 (3)

In practice, the components of the field are typ�
ically known with a certain error, therefore the
input data in our problem are composed of the val�
ues of fi,δ. Using the solution of the variational
problem

(4)

(5)

we find that the sought functions should have the form

(6)

Thus, we come to the following system of the linear
equations, whose matrix in our case has the elements

(7)

In our case, coefficients аij can be calculated in the
explicit form with the use of the Poisson integral:

  (8)

Based on the values of λi, i = 1, 2, …, N, which are
found by solving the system (6)–(8), we can determine
the values of the functionals рs, s = 1, 2, …, S (see
(Strakhov and Stepanova, 2002a)). In our study, we
sought for the spatial distribution of the gravity field.

Below we describe the main principles of con�
structing the R�approximations according to (Helga�
son, 1983; Gel’fand et al., 2000).

The application of the Radon transform to both
sides of the expression gives

 (9)

since the Radon transform of the convolution of the
functions is equal to the convolution of the product of
the Radon transforms of the corresponding functions.
We can find the quantities (or, to be more exact, the

functions) :
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Here, the integral with respect to the variable p is
understood in the sense of its principal value. It can be
calculated in the explicit form:

In practice, the components of the field are typi�
cally specified with a certain error, therefore the input
information is composed of the values of fi,δ. By
solving the variational problem (in the general
form, the variational statement of the problem is
described in (Strakhov and Stepanova, 2002a;
2002b))

 (11)
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Here, coefficients аij cannot be calculated explicitly;
however, the integral with respect to ϕ can be calcu�
lated exactly. Indeed, the denominator of the func�
tions to be integrated with respect to the angle ϕ is a
product of certain powers of the cubic trinomials of

 and  Denoting the variable of
integration by  and passing to the integra�
tion of the function of complex variable z along the
unit circle, in the denominator we obtain the product
of the powers of the quadratic trinomials in the follow�
ing form:
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Using the factors λi, i = 1, 2, …, N, which are deter�

mined from the solution of system (14) and (15), one can
then find the values of the functionals рs, s = 1, 2, …, S of
the elements of gravity.
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IN THE LOCAL VERSION

Above we considered the algorithms for construct�
ing the approximations of the anomalous gravity and
magnetic fields, which are based on representing the
field by the sum of the simple and double layers
(S�approximation) or which use the Radon transform.
The computer technologies suggested for implement�
ing these approaches comprise three steps.

The first step is the formation of the elements of
matrix A. Preliminarily, a certain number (Ncontr) of
the observation points are excluded from the set of the
initial points by the programs of sorting and selection.

The matrix elements were calculated by formulas (8).
We developed the programs MAVPS2N and MATVEC
for finding the elements of the matrix. The linear
transformations were constructed with the use of the
MATPS2CON program (Strakhov and Stepanova,
2001).
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P�SPPM package (Strakhov, V. and Strakhov, A.,
1999a; 1999b) for SLAEs with the symmetric positive�
definite matrix and the right�hand side specified
approximately, as well as the ORTOG2002�2 program
based on the method described by Strakhov and
Stepanova (Strakhov et al., 1999; Strakhov and
Stepanova, 2001).

The third step is the reconstruction of the field and
calculation of its transforms. We have developed the
MATPS2CON and MAVPS2N programs for finding
the distribution of the elements of gravity, higher order
derivatives of the potential, and the analytical exten�
sion of the fields.

THE GRAVIMETRICAL METHOD 
FOR CALCULATING THE PLD

The angle between the direction of the normal
gravity γ and the direction of the plumb line at
point  is referred to as the plumb line deflection.
The PLD is typically described in terms of its projec�
tions on the meridional plane and on the plane of the
first vertical (ξ and η, respectively),

(16)

Here  are the components of the acceleration
of gravity in the local coordinate system, in which the
Ox axis is directed to the north, Oy axis points to the
east, and the Oz axis is perpendicular to the Earth’s
surface at the point of the observations. According to
the Vening Meinesz formula and the formula sug�
gested by L.P. Pellinen (1969), the PLD can be calcu�
lated in the following way:

(17)

Here,  is Faye’s (free�air) gravity anomaly at a given

point and Q(ψ) =   is Stokes’ function,
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where f is the gravitational constant, δ is the average
density of the Earth’s rocks, R is the average radius of
the Earth, γ is the normal gravity, and h is the differ�
ence between the geodetic heights of the observation
point and the current point. In the integration by for�
mulas (16), the space around the point of study (at
which the PLD is calculated) is subdivided into five
areas, just as it is in the template suggested by V.F. Ere�
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meev. The central area is a circle with a radius of 5 km;
it is encircled by four ring�shaped areas limited by
radii of about 5, 100, 300, 1000, and 2000 km. Since
the Vening Meinesz function, , rapidly decreases
with increasing distance, the gravity anomalies located
in the distant zones exert weaker impacts on the PLD
at a given point compared to the impacts from the
anomalies located in the nearby zones. Therefore, the
effects of the anomalies located in the different zones
are taken into account with a different accuracy.

Each ring area is subdivided into a few zones in
such a way that their influence on the PLD at the stud�
ied point is approximately equal. The coefficients
characterizing the impacts of the ring zones on the
PLD decrease with the distance from the center of
gravity. Each area is partitioned by the radial lines into
the segments (spherical trapezoids), which have equal
areas and exert different impacts on ξ and η (the
impact is proportional to the cosine or sine of the azi�
muth А). In the integration over each of these spherical
trapezoids, we use the Gaussian formula with the
highest possible order of accuracy (Krylov and
Shul’gina, 1966) with 12 nodes for each measurement.
This formula provides an order of accuracy of 2n – 1,
where n is the number of the nodes. Therefore, for the
successful calculation of PLD, it is required to obtain
the approximation of the anomalous field that is as
accurate as possible. The values of the field near the
studied point are reconstructed in the nodes of the grid
(which is in the general case irregular) by the method
of S�approximations with a relative accuracy of up to

10–5, i.e.,  ≈ 0.005 mGal. For this pur�

pose, the gravity field at the points of a certain part of
the survey area is represented by the S�approximations
(in the examples described below, this area is confined
between 36° and 39° E and between 41° and 45° N).
We select about 5000 points, which provides quite an
accurate approximation and, at the same time,
requires a reasonably short time for computing the
approximating constructions. After this, the field can
be reconstructed at any desired point. In the distant
zones from the point of PLD calculation (starting
from point 6, with a total of 26 integration zones pro�
viding equal influence), we applied the algorithm of
finding the value of gravity field that is closest to the
value of the field in the current point of the integra�
tion. The initial satellite data are suitable for deter�
mining the values of  on a grid with a step of 1'. The
corresponding computerized technologies for this
were designed by our team. Taking into account the
anomalies of radius ψ = 20° in the area Σ, we obtain a
much simpler formula for the Vening Meinesz func�
tion. By expanding  into a series, we obtain

(19)
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(20)

(21)

By replacing the angular distance  by the lin�
ear distance r, we find that

(22)

The surface confined between the circles with radii
r0 = 5 km and r = 2000 km is subdivided into four con�
centric ring areas: (1) from 5 to 100 km; (2) from 100
to 300 km; (3) from 300 to 1000 km; and (4) from 1000
to 2000 km. In turn, each ring area is partitioned into
concentric zones exerting an equal impact on the
PLD. The radii of these zones are determined by the

condition  = 

where Р is a constant. We selected the radii of these
zones in accordance with (Shimbirev, 1975). The first
area of integration was divided into 16 equal sectors,
the second and third areas, into 24 sectors, and the
fourth, into 48 sectors.

For calculating Faye’s gravity anomalies at the
given points, in formula (8), the coordinates of these
points should be substituted instead of xj, yj, zj. Then, the
matrices with elements (8) are multiplied by vector λ,
which is found from the solution of the following SLAEs:

 

where  is the column vector of the values of gravity in
the initial sample (about 3600 points in the segment
confined between 29° and 28° W and between 42°  and
44° N with a step of 2 minutes and 13500 points in the
segment confined between 48° and 43° W and between
22° and 25° N with a step of 2 minutes).

PLD CALCULATIONS 
IN THE REAL SURVEY AREA

The real areas for this study were selected in two
segments of the territory covered by the detailed grav�
ity survey. These areas are boxes with a size of

−

= π

= π

=

″ξ = −
πγ ″

× Δ −
π

× Δ

∫ ∫

∫ ∫

km

km

km

0

0

0 2000

5 2

0 0

2000 2

1

5 0

1
2 sin1

1 1cos
2

cos .

r

F

r

F

r

g AdAdr
r R

g Q AdAdr

−

= π

= π

=

″η = −
πγ ″

× Δ −
π

× Δ

∫ ∫

∫ ∫

km

km

km

0

0

0 2000

5 2

0 0

2000 2

1

5 0

1
2 sin1

1 1sin
2

sin .

r

F

r

F

r

g AdAdr
r R

g Q AdAdr

r Rψ =

( )1 ,

1339.6 , 0.315 , 0.000066 .

AQ B Cr
r

A B C

= + +

= ″ = ″ = ″

1 2

0 1
1 1

r r

r r
Q dr Q dr=∫ ∫

1
1 ,

n

n

r

r
Q dr P

−

= =∫…

,A fδλ =

fδ

16 × 25 degrees along the latitude and longitude (and
the corresponding areas on the Krasovsky ellipsoid)
with a step of two minutes along each coordinate. The
survey was conducted on the sea surface and in the
adjacent areas on the shore. For testing the efficiency
of the method, we selected the area in each segment,
where it is required to calculate the value of the PLD.
The sizes of the first and the second areas (central
region of the sea) are 2 × 1 and 3 × 5 degrees latitude
and longitude, respectively. Using the method of S�
approximations, we found the densities of the simple
and double layers distributed on the planes, which
generate the gravity field in a given area. The layers
were distributed on the plane located at the depth l =
15 km below the surface. In this example, we can use
the spherical version of the S�approximation because
the diameter of the area is greater than 300 km. How�
ever, the plane version is applicable. In this case, the
support of the simple and double layers is located
below the spherical surface at a distance of about 15
km from the top of the spherical segment. In both the
real and model examples, the calculations show that
the accuracy of the approximation in this case is as
high as in the regional version of S�approximations,
while the computations are faster. The obtained
approximations of the gravity field were then used for
finding the values of gravity at the arbitrary points,
which is required for the calculations by the Vening
Meinesz formulas. Besides, we also carried out the cal�
culations based on the Radon transform by formulas
(13)–(15).

Using formulas (7) and (8), we found the solution
of the SLAEs. The gravity field was determined with

relative accuracy  = 2 × 10–4. Here, Ax

is the gravity field yielded by the approximation;  is
the initial gravity field measured at the points of the
corresponding sample;  denotes the Euclidean
norm of the vector. Figures 1 and 2 show the maps of
the initial height anomalies for the two segments con�
sidered.

The accuracy of the field reconstructed on the sur�
face depends on the number and mutual positions of
the observation points, as well as on the other factors,
among which the ratio  is most important.
Here,  is the step along the х and у coordinates; and
r is the distance to the nearest topographical features
(to the plane on which the simple and double layers are
distributed). It is reasonable to specify the value of ε in
the range of 0.3 to 0.5. After finding the analytical
approximation of the gravity field in the neighborhood
of the studied point (where the PLD was calculated),
we calculated the PLD components by the Vening
Meinesz formulas. The graphs of PLD based on the
initial data and calculated by the suggested method for
the described areas are shown in Figs. 3–6. The accu�
racy of reconstructing the PLD is 1.24 arcsec for the

E

E
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Fig. 1. The contour map of the height anomalies for area 1.
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Fig. 2. The contour map of the height anomalies for area 2.
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Fig. 3. The contour map of the difference between the PLD values calculated by the method of S�approximations and the given
PLD values. Area 2, northward deflection.
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Fig. 5. The contour map of the northward PLD. Area 2.
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first area and 2.1 arcsec for the second area, which is a
larger one.

CONCLUSIONS

A new technique for calculating the PLD is
described, in which the S� and R�approximations are
applied in the calculations by the Vening Meinesz for�
mulas. The suggested method makes it possible to esti�
mate the PLD at an arbitrary point of the Earth with
reasonable accuracy (1.5–2 arcsec).
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