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Abstract⎯Strategies for the analysis of plant volatiles have changed significantly over the past 15–20 years
due to the introduction of new approaches to sample preparation and analysis, including those initially devel-
oped for other areas and currently applied to the analysis of plant metabolites. Any analysis of plant sub-
stances consists of two phases. The first phase includes plant material collection, primary processing, con-
servation, storage, and extraction to prepare samples for research. The second phase is the analysis itself by
various chromatographic, spectral, and/or hybrid (hyphenated) techniques. Most scientific publications
focus their attention on the second phase, and the first remains “behind the scenes,” although it is in the first
phase that the biomaterial experiences significant transformations. It is impossible to correctly and ade-
quately evaluate the ultimate result of a study without taking these transformations into account. Specific dif-
ficulties arise in both phases, and they are reviewed in this paper. The wide distribution of modern chromato-
graphic instruments equipped with sophisticated software allows a significant portion of an experiment to be
performed automatically. However, one should realize that the improvement of experimental techniques does
not change the basics of a method, and, therefore, does not eliminate its intrinsic limitations. To avoid falla-
cies in the publication of the results, all the experimental data obtained in the automatic mode should be sub-
jected to an impartial revision by the experimenter with regard to all known limitations inherent in methods
used for separation and detection of components. In order to correctly interpret experimental results, one
should know the entire history of samples under investigation; thus, it is necessary to document carefully all
manipulations with plant material from the collection of raw materials till the final sample preparation. Only
with this proviso the study can be expected to provide meaningful results.
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INTRODUCTION
Plants produce, accumulate, and release volatile

substances, which are a heterogeneous group of low-
molecular-weight molecules with saturated, unsatu-
rated, linear, branched, and cyclic fragments. They
bear various chemical groups: hydroxy, carbonyl,
ester, carboxy, etc. Terpenoids (isoprenoids) consti-
tute the largest subgroup of volatile plant metabolites,
including over 40000 structures [1]. The main bio-
chemical pathways of the synthesis of volatiles have
been identified, and many genes encoding the appro-
priate enzymes are known [2]. Numerous volatile sub-
stances are used in the food, pharmaceutical, agricul-
tural, and chemical industries. Special attention is
placed on small molecules that play key roles in biol-
ogy, acting as intermediates in many important pro-
cesses: metabolism, signal transduction, mating, and
chemical protection. Small molecules are classified
with traditional categories: metabolites, secondary
metabolites, pheromones, hormones, etc. Some of
these categories overlap, and more than one keyword
may be attributed to a single compound. For this rea-
son, the umbrella term small biogenic molecules is in
increasing use for description of any small molecule
derived from a biologic source. Knowledge of the
structures and relative abundances of volatiles released
by plants is of great significance for many basic and
applied fields in biology, chemistry, and interdisci-
plinary research. To obtain such information, scien-
tists investigate profiles of plant volatiles and over-
come analytical difficulties stemming from the fact
that they deal with complex mixtures of components
with diverse structures and properties. The chemistry
of natural products and metabolomics are two major
disciplines concerning the chemical profiling of plant
objects [3]. The study of plant volatiles requires such
analytical methods and technologies that would allow
not only the assessment of volatile substance compo-
sition but also the monitoring of the variation of their
profiles and the detection of traces of substances char-
acteristic of target plant species. Analytical strategies
have changed profoundly over the past 15–20 years
because of the introduction of new approaches to
sample processing and analysis. Some of these
approaches were designed for other fields of inquiry,
and now they are applied to the analysis of plant vola-
tiles. The development of analytical methods and their
impact on the strategies of plant volatile studies are
concisely reviewed in [4–7].

Any analysis of plant substances includes two
phases. The first phase includes collection, primary
processing, preservation, storage, and extraction to
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prepare samples for the second phase, the analysis
proper. In the second phase, the prepared samples are
analyzed by chromatographic, spectrometric, and/or
hyphenated methods. In many publications, attention
is focused on the second phase, whereas processes
occurring in samples in the first phase are behind the
scenes. However, these processes are significant, and
the ultimate result of the study cannot be properly
interpreted without their consideration. Specific
problems arising in both phases of a study are the sub-
ject of this paper. The first cluster of problems is con-
sidered in the section Native components or artifacts?,
and the second, in subsequent sections Qualitative
analysis, Quantitative analysis, and Analysis of specific
types of substances.

The first procedures carried out by a student of
plant metabolites are the isolation and concentration
of plant substances, many of which are highly labile, as
they tend to undergo various chemical processes out-
side plant tissues. At present, no methods for qualita-
tive or quantitative analysis of substances directly in
intact plant tissues are known, and any method of iso-
lation and concentration either distorts the propor-
tions of native components or produces artifacts, i.e.,
substances originally absent from the matter under
study and derived from native substances in the course
of extraction and sample pretreatment.

NATIVE COMPONENTS OR ARTIFACTS?
Artifacts in plant material analysis stem from two

causes: experimental inaccuracy and the instability of
analytes under experimental conditions.

To avoid experimental f laws, it is necessary to
invoke the experience of other scientists and to under-
stand the main causes of the f laws. A compendium of
traps and problems encountered by all analysts using
various spectrometrical and chromatographic meth-
ods (GLC, mass spectrometry, HPLC, and TLC) has
been published and dedicated to “the innumerable
scientists who made mistakes, used impure chemicals
and solvents, suffered the consequences of unantici-
pated side-reactions, and were otherwise exposed to
mayhem yet were not too embarrassed to publish their
findings” [8].

However, even with analyses done thoroughly and
all manipulations prescribed for isolation of plant
metabolites [9] followed painstakingly, artifacts can be
unavoidable, and labile native compounds undergo
chemical transformations at various steps of the study:
(1) plant material pretreatment (collection, transpor-
tation, drying, crushing, etc.), (2) isolation
(extraction) of substances from the raw material, (3)
extract storage, and (4) analytical manipulations.

Plant Material Pretreatment
Plants are injured when being cut. As a result, the

normal plant life is disturbed and stress-associated
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metabolites, i.e., substances normally absent from the
plant, are produced [10, p. 19]. The gradual ebb of all
vital functions during plant material drying disrupts
the balance of normal biosynthetic processes and
causes enzymatic conversions of native components
not characteristic of a living plant. The profile of nat-
ural compounds in dried material changes with time,
although all enzymatic processes are arrested by desic-
cation. In this situation, the secondary processes
include loss of the most volatile components and con-
versions of plant components driven by light and the
oxidative potential of aerial oxygen diffusing into tis-
sues. For instance, the study of dill oil samples
obtained from freshly collected plants, plants air-dried
in the common way, and lyophilized plants revealed
the appearance of artifacts and disappearance of some
native component. Air-dried dill yielded ten times less
oil than fresh plants, and the oil nearly completely lost
benzofuran derivatives, the most important olfactive
components of dill [11]. Examples of differences
among volatile profiles of various wild plants stored for
different time spans are presented in [12]. Differences
of metabolic profiles of juniper (Juniperus monosperma
(Engelm.) Sarg.) in different processing protocols are
reported in [13]. The protocols were as follows: (A)
Immediately after cutting, plants were placed on dry
ice for 5 h and then stored at –80°C for three weeks
(control). (B) Plants were kept at room temperature
for 24 h, frozen to –80°C, and stored at this tempera-
ture for three weeks. (C) Plants were kept at room tem-
perature for the first 24 h and then kept at +8°C for
three weeks. The study showed that juniper shoots
should be stored for no more than three weeks after
cutting, and the storage temperature should be below
+8°C; otherwise, terpenoid profiles are considerably
distorted as compared to the control.

Freshly cut plant material can be used in studies of
volatiles, but such studies demand that steam distillation
and all preliminary manipulations be carried out directly
at the sampling site under field conditions [14]. 

In practice, it is difficult to arrange field work so
that plant material or fresh extracts could be preserved.
Therefore, most scientists settle for work with dried
material and knowingly deal with altered metabolite
compositions, containing secondary products and
artifacts.

Extraction
Isolation of labile native substances faces many

problems arising during extraction and analysis. Vari-
ous separation protocols involving certain methods or
combinations are discussed in [15]. Specific features
of conventional methods for substance isolation from
plants inevitably generate artifacts [9]. Peroxides are a
significant group of natural substances [16, 17], and
many of them are important bioactive molecules [18–
20]. Problems arising in the isolation and analysis of
these substances are associated with their instability.
RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY  V
Liquid extraction. Generally, liquid extraction is
applied to dried material, where all membranes have
lost their original properties or are completely
destroyed. Extraction with weakly polar organic sol-
vents (hexane, petroleum ether, gasoline, aromatic
and chlorinated aliphatic hydrocarbons, or benzene)
affects native components mildly, whereas alcohols
and aqueous organic solvents can modify some of
them. The main difficulties in the latter case are asso-
ciated with partial hydrolysis of some groups of sub-
stances (esters and glycosides of various structures),
esterification, and interesterification [9, 21–23]. Spe-
cific problems are made by certain admixtures, partic-
ularly, in chlorinated organic solvents. Their use gen-
erates several known types of artifacts [9].

Steam distillation. Steam distillation is the simplest
and most widespread method for isolating essential
oils. It is commonly known that some essence compo-
nents are absent from intact plants; rather, they are
extraction artifacts. They can be formed by enzymatic
degradation or chemical decomposition occurring in
heating with the presence of water. These processes are
associated with degradation of labile and high-molec-
ular-weight compounds. Plant tissues contain certain
amounts of lower organic acids; hence, steam distilla-
tion always occurs under weakly acidic conditions,
which adversely affect the preservation of native com-
ponents. Linalool is not decomposed in the pH range
from 5.0 to 8.0, but the allylic rearrangement of linalyl
acetate readily occurs at pH 7.0, not to speak of weakly
acidic settings. Therefore, materials containing linalyl
acetate are always difficult to analyze because of artifacts
[24]. Essential oil components are often produced by
hydrolysis of corresponding glycosides, as in the cases of
rose oil [25] and many other essences [26–30].

In steam distillation, native components of plant mate-
rial are extracted owing to diffusion or released in the deg-
radation of special secretory bodies [14, pp. 19–26].
Most often, volatiles are found in glandular hairs.
These hairs are bodies diverse in morphology [31],
whose roles are the synthesis and secretion of certain
substances [32], not necessarily volatile [33].

Direct sampling from secretory bodies and analysis
of the matter has revealed dramatic differences in the
qualitative and quantitative compositions between
essential oils obtained by steam distillation, on the one
hand, and the content of glandular hairs, on the other
hand [34, 35]. The conclusion drawn in the studies is
disappointing: the analysis of essential oils is basically
the analysis of artifacts formed in distillation and gas
chromatography procedures.

The main pathways generating artifacts are associ-
ated with thermal, hydrolytic, and oxidative processes
and with light-induced and acid-catalyzed transfor-
mations during extraction. The major groups of arti-
facts are chamazulene and derivatives; spathulenol
[36], products of hydrolysis of phospholipids and gly-
cosides, and products of the resolution of chlorophyll
ol. 44  No. 7  2018
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and cuticle biopolymers. The last group includes cutin
[37], cutan [38], and other epicuticular components
[39, 40]. The main pathways of artifact formation and
the major groups of artifacts are discussed in the
guidebook on the analysis of plant volatiles [10,
pp. 194–220]. Known artifacts belonging to various
structural groups are mentioned in the book on
essences [41, pp. 7, 45, 53, 145, 175, 182].

Many artifacts belonging to terpene hydroperox-
ides are found in terpene-containing materials. Vari-
ous monoterpenes are employed in beauty care prod-
ucts and perfumery to add certain fragrances. How-
ever, the most frequently used terpenes are readily
oxidized when exposed to air to form hydroperoxides,
which are potent skin sensitizers [42]. Allergic activity
has been proven for oxidized derivatives of linalool [43–
45], linalyl acetate [46, 47], limonene [48–52], cinnamic
alcohol [53], and citronellol [54]. In a study of lavender
oil, the rates of the formation of allergenic hydroperox-
ides were found to be the same in the oxidation of free
terpenes or terpenes within the essence [55].

Extract Storage
Within the time span between the extraction and

analysis of the extracted matter, the composition of
the latter may suffer changes whose type and degree
depend on storage conditions. These changes have
been best investigated in essential oils, many of which
are commercially available [41]. Therefore, the preser-
vation of their composition and properties is import-
ant in practice.

Essential oils are unstable by their nature. They
undergo spontaneous chemical transformation, which
eventually alter their chemical composition. Changes
in the volatile profiles and formation of artifacts
during essence storage were demonstrated for citrus
oils [56, 57]. When stored in the cold (–21°С) within
12 months, citrus oils showed no significant changes,
but after exposure to room temperature (+20.5°С) the
proportions of components changed profoundly, and
numerous artifacts emerged. In particular, 34 artifacts
were found in oil from Citrus aurantium, and they con-
stituted 17% of all volatiles [57]. The most abundant
artifacts were (+)-carvone, trans,trans-farnesyl ace-
tate, sabinene hydrate, 1-octene-2-ol, cis,cis-farnesyl
acetate, and dihydrocarveol acetate. The chemical
composition of essence from pomelo (Citrus maxima)
was studied in [58] in connection with the deteriora-
tion of its fragrance with storage. It was shown that the
unpleasant notes emerging in storage were associated
with the formation of oxidized linalool and limonene
derivatives, caused primarily by the concurrent action
of air oxygen and sunlight. The most appropriate sets
of test parameters for tracing chemical changes during
essence storage are discussed in [59]. Current knowl-
edge of possible changes in essential oils and factors
affecting essence stability is comprehensively reviewed
in [60]. The review describes various pathways of deg-
RUSSIAN JOURNAL OF
radation caused by ambient factors and analytical
methods for assessment of both native and altered
essence profiles. The key role in the formation of arti-
facts in storage is thought to be played by oxidative
processes. Part of them can be inhibited by adding
antioxidants [61].

According to our experience, the compositions of
the overwhelming majority of essence samples kept in
darkness in vacuum-sealed ampoules at 5–8°C
remain unchanged for years1. The most notable excep-
tions are samples of essential oils containing signifi-
cant amounts of organic acids. In such cases, even
with proper preparation and storage, the samples
undergo diverse acid-induced transformations distort-
ing the native composition.

Analysis
Some components of plant extracts are stable

enough during isolation but are too thermolabile to
tolerate common GC analysis. The Cope rearrange-
ment of bicyclogermacrene to bicycloelemene at heat-
ing has long been known [62]. Germacrane derivatives
are generally thermolabile, and they undergo various
reactions during gas chromatography [63, 64], ham-
pering their quantitation [65].

Hydroperoxides are also too thermolabile to sur-
vive GC. For this reason, Nilsson et al. [66] compared
various ionization methods in hydroperoxide detec-
tion by liquid chromatography–mass spectrometry
(LC–MS). They showed that ionization efficiency
was substantially influenced by mobile phase compo-
sition and device tuning.

The problem of thermolability can be coped with to
an extent by so-called cold injection to the GC col-
umn, which allows avoiding the heat stress caused by
heating in the evaporator [34].

An appropriate alternative is NMR spectrometry.
It allows the detection and quantitation of thermola-
bile components.

QUALITATIVE ANALYSIS
The state of the art in qualitative chromatographic

analysis is reviewed in [67]. Gas chromatography is the
first-line method for analyzing complex mixtures of
biogenic volatiles, such as f loral aromas and essential
oils [68]. Gas-chromatographic analysis of essential
oils is briefly outlined in [69].

As gas chromatography is a widespread technique
in routine analyses of essences, the protocols should
be optimized, and their duration should be as short as
possible. The Fast-GC method, described in [6, 70,
71], reduces analysis duration nearly tenfold, to 3–4
min in comparison to 30–40 min in the conventional

1 This is true only for properly prepared samples, carefully dried
and free of desiccant remnants.
 BIOORGANIC CHEMISTRY  Vol. 44  No. 7  2018
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analysis, by using short capillary columns (about 10 m
in length) and fast heating, up to 40°/min.

Retention Indices

Retention is one of the main parameters character-
izing the behavior of a substance in chromatographic
analysis. The retention index is its generally accepted
measure. The isothermal and linear temperature-pro-
grammed modes demand different procedures for cal-
culating retention indices. Retention in the isothermal
mode is characterized by Kováts retention indices
[72]. Kováts indices vary with temperature [73] and
stationary phase type. At present, the mean interlabo-
ratory reproducibility of Kováts indices is about 5–10
units for standard nonpolar phases and 10–25 units for
standard polar ones [74]. In linear temperature pro-
gramming, retention times of homologs linearly
increase with the number of carbon atoms in the mol-
ecule. Therefore, linear interpolation and absolute
retention times can be used. Retention indices in the
linear temperature-programmed mode are called lin-
ear retention indices (LRIs). Their calculation is sim-
pler than in case of Kováts indices [75]. Linear reten-
tion indices are widely employed in the identification
of volatile components of plant extracts, and the limits
of their applicability are considered in technical stud-
ies [76]. Retention indices deduced from experiments
conducted in the linear programmed mode depend on
the temperature programming profile. It should be
kept in mind that isothermal Kováts indices and reten-
tion indices obtained in the temperature-programmed
mode are incommensurable and nonproportional and
that LRIs measured in different temperature regimes
may differ greatly [10, pp. 89–90]. Therefore, data
reported in the literature should be used with due cir-
cumspection. 

In the guideline method of obtaining reproducible
profiles (fingerprints) of volatiles in GC on nonpolar
stationary phases, a chromatogram is recorded under
linear temperature programming at the rate 4°C/min
within 50–250°C [77]. Retention indices for the HP-
5ms column reported in the manual [10] were mea-
sured just in these settings. There are other retention
index libraries, e.g., the library for the DB-5 column at
the heating rate 3°C/min within 60–246°C [78] and
the library for the MassFinder 4 program, which
reports retention indices for the DB-1 column with
temperature programming regimes not indicated.

Features of retention indices obtained in the tem-
perature-programmed mode and their correlation
with thermodynamic indices of components are dis-
cussed in [79]. The procedure of LRI determination in
the analysis of plant volatiles is described in [10,
pp. 78–91].

Determination of retention indices is the first step
in the GC identification of substances in relatively
simple mixtures. Analysis of more complex mixtures
RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY  V
with multiple overlaps of chromatographic peaks
demands more nuanced approaches. One of them is
two-dimensional gas chromatography (GC × GC, or
2D GC) [80]. The tooling backup of 2D GC deter-
mines certain features in the analysis and interpreta-
tion of retention indices. A special analysis design
involving methods for constructing retention correla-
tion maps for the first and second dimensions has been
developed. The first dimension generates linear tem-
perature-programmed indices, whereas the second
dimension may be interpreted in terms of “pseudoiso-
thermal” retention indices [81].

Retention index values are unknown for many
components of complex native mixtures; therefore,
predictions of the chromatographic behavior of indi-
vidual components are needed [82]. Earlier studies
showed that retention indices of aroma substances in
GC on nonpolar and polar stationary phases could be
predicted within 3.6 and 5.6%, respectively [83].
Approaches to the prediction of retention parameters
in terms of QSAR2 models are being developed [84].
The association between molecular structures and
retention parameters in various chromatographic
techniques is discussed in [74], and it is indicated that
the choice of descriptor sets is most important,
because not all physicochemical descriptors correlate
satisfactorily with retention parameters, and the sim-
plest design parameter, formation heat, is not associ-
ated with chromatographic retention. The most com-
plete collection of molecular descriptors is a compre-
hensive review of this field of research from its
nascence to the present. The practically oriented refer-
ence book gives a thorough overview of different
molecular descriptor representations and their corre-
sponding molecular descriptors [85]. The quality of
index prediction worsens as the stationary phase
polarity increases [74]. As shown by examples of alco-
hols and esters, retention times can be predicted for
certain stationary phases at temperatures within 70–
140°C on the basis of molecular descriptors imple-
mented in CODESSA™3 software [86].

Mass Spectra
Gas chromatography with mass-spectrometrical

detection (GS-MS) is the commonest method of
investigation and analysis of volatile and conditionally
volatile secondary plant metabolites [68]. Gas chro-
matography combined with mass spectrometry–elec-
tron impact ionization (EI-MS) has gained wide
acceptance in recent decades and become a routine
method for analysis of volatile and conditionally vola-
tile substances. The mass spectra it produces are an
efficient tool in the identification of components in
complex mixtures. However, the application of the

2 Quantitative Structure-Activity Relationship.
3 Comprehensive Descriptors for Structural and Statistical Analy-

sis (http://www.semichem.com/codessa/).
ol. 44  No. 7  2018
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MS detector in gas chromatography faces a number of
difficulties, first of all, the limited reproducibility of
EI–MS spectra in GC–MS. Mass spectra of the same
substance obtained by electron impact at the standard
ionizing electron energy 70 V in different devices may
differ considerably [87]. Moreover, in the same device
mass spectra may differ even when recorded under
strictly controlled conditions. The poor reproducibil-
ity is related, first, to intrinsic features of mass spec-
trometry itself [88], and second, to engineering and
operational features of GC-MS as a hybrid method:

⎯Relative fragmentation rates along different
pathways may vary with ion source temperature to
impair the relative peak amplitude reproducibility in
the resulting mass spectrum.

⎯The pressure in the ion source generally exceeds
the optimum for MS. As a result, significant amounts
of ion–molecule reaction products emerge in addition
to monomolecular transformations common in EI-
MS. Therefore, the recorded spectra may deviate
greatly from library spectra obtained in “conven-
tional” mass spectrometers.

⎯The mass spectrum depends on the pressure in
the ion source, and this pressure varies during the elu-
tion of a chromatographic peak. Therefore, the look of
a mass spectrum may depend on at what point of the
peak the spectrum is recorded: on the upgrade, atop,
or on the down grade.

The limited reproducibility of IE-MS influences
the identification of stereoisomers (diastereomers).
Many of them show but subtle differences in mass spec-
tra, and the reproducibility is insufficient for their reliable
discrimination. Therefore, gas chromatographic data
(retention indices) are crucial in such cases.

Two-Dimensional and Hyphenated Methods

Typically, a plant extract contains a complex set of
metabolites, which cannot be resolved in a single
experiment. Even when the sample contains only vol-
atiles, chromatograms can have dense clusters of peaks
of individual components with multiple overlaps.

Mixtures containing natural sesquiterpenoids are
hard to analyze. Plants usually contain less sesquiter-
penoids than mono- or diterpenoids, but the first are
of special importance in odor formation [89], in the
formation of secondary atmospheric aerosol [90], and
as biologically active components of plant extracts
[91–100]. Many pairs of sesquiterpenoids have very
close or even matching retention indices, and many
have practically indistinguishable EI mass spectra [10,
78, 101]. These facts make sesquiterpenoids a very dif-
ficult object for analysis [102].

Two-dimensional and hyphenated methods are
helpful in the analysis of very complex mixtures of
plant substances [103]. Many of them have become
important tools for rapid identification of known com-
RUSSIAN JOURNAL OF
ponents in the search for new biologically active com-
pounds [104].

Currently, two-dimensional gas chromatography is
one of the most widespread 2D methods. It implies
sequential separation in chromatographic columns
with different phases [105]. The hybrid method com-
bining 2D GC and MS detection (GC × GC–MS) [5]
is of special interest. In this method, the consecutive
use of different columns is accompanied by a record of
mass spectra of components to facilitate component
identification in complex mixtures and increase its
reliability. Its potential can be illustrated by analysis of
volatiles in tobacco leaf extract [106]. Two-dimen-
sional GC allows enantioselective analysis of compo-
nents in complex mixtures by using a column with a
chiral selector in the second dimension [107, 108].
Collections of experimental data on the elution order
of enantiomers under various conditions [109] make
the analysis notably easier.

Recent advances in the application of 2D-GC to
the analysis of essential oils and aroma substances are
reviewed in [7].

Two-dimensional and hyphenated analytical
methods often generate bodies of data difficult to pro-
cess. The application of factor analysis to chromatog-
raphy by modern hybrid methods is reviewed in [110].

NMR Spectroscopy
Nuclear magnetic resonance spectroscopy is a rou-

tine method in the study of organic molecules, includ-
ing plant substances. Owing to the nondestructive
moderate temperature of the analysis, NMR spectros-
copy is an indispensable tool in the detection and
identification of unstable and thermolabile com-
pounds, such as germacranes [64] and corresponding
furanodienes [111], ascaridole [112], acids of the
eudesmane family [113], triterpenes [114], and sesqui-
terpene lactones [115]. In addition, computer-assisted
methods based on 13C NMR and data from the litera-
ture allow efficient identification of compounds bear-
ing a certain group in plant extracts, as shown by the
example of taxanes [116].

Also, NMR spectroscopy is mandatory in the iden-
tification of components in very complex mixtures and
some particular classes of compounds.

Plant extract profiling. In addition to the common
application to the determination of the structure of
organic molecules, NMR spectroscopy is used in
studies of the chemical compositions of plant tissues
and living plants [117, 118] and in studies of metabolite
sets regardless of their complexity [119]. NMR allows
visualizing profiles of a wide range of metabolites from
plant tissues and cells [120]. It makes NMR a promis-
ing tool for profiling plant metabolites. NMR provides
information inaccessible by other methods [121]. The
advance in structural analysis and study of plant
metabolomes by high-resolution NMR is summarized
 BIOORGANIC CHEMISTRY  Vol. 44  No. 7  2018
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in [122]. Various NMR techniques are greatly helpful
in the spectral profiling of medicinal plants and herbal
products [3].

Chirospecific analysis. NMR spectroscopy can
often efficiently replace enantioselective chromatog-
raphy. Sometimes, it is the only means to measure
enantiomeric purity when enantiomers cannot be sep-
arated by chromatography.

The enantiomeric purity of monoterpene deriva-
tives can be analyzed by 13C NMR with the chiral shift
reagent Yb(hfc)3 added directly to the sample, as was
done with camphor and fenchone [123] and with
bornyl acetate [124]. Also, 1H NMR can be applied to
isolated compounds, as in a study of linalool [125].

NMR spectroscopy is convenient for analyzing the
enantiomeric purity of configurationally unstable
compounds. An example is hyoscyamine. It readily
racemizes to yield atropine during extraction, and
chromatographic methods provide distorted results.
The task is resolved by 13C NMR with Yb(hfc)3 [126].
Chiral solvating agents can be used instead of chiral
shift reagents, e.g., (R)-(–)-2,2,2-trif luoro-1-(9-
anthryl)ethanol [127].

Chiral reagents for determining absolute configu-
rations of organic molecules by NRM are overviewed
in [128]. The methodology of the determination of
absolute configurations is discussed in [129], and
recent advances in the NMR-assisted recognition of
enantiomers are described in [130].

QUANTITATIVE ANALYSIS
Gas chromatography is one of the few quantitative

methods of analysis of complex mixtures. The quanti-
tation of plant extract components demands equip-
ment calibration, measurement error estimation, and
the validation of methods for quantitation of analytes.

General issues in quantitation by GC are discussed
in the guidebook [131]. Calibration is a procedure
aimed at the establishment of the metrological state of
a measurement system. Analytical calibration provides
an empirical correlation termed metrological func-
tion. In subsequent measurements, it allows the
amount of an analyte to be deduced from the recorded
value of the analytical signal. Analytical calibration is
discussed in [132], and quantitative chromatographic
analysis by N-dimensional calibration strategies, in
[133]. As in any analytical method, quantitative chro-
matographic analysis encounters the problem of
determining the error of measured variables. Sources
of systematic errors and methods for their correction
are discussed in [134]. The task of error estimation
with regard to the methodology of routine analyses is
posed in [135–137], where various sides of the search
for error sources and appropriate corrections in form-
ing the ultimate measurement result are considered.
Any analytical technique requires validation. In [138,
139], issues of analytical method validation are dis-
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cussed, and a detailed step-by-step guide for this pro-
cedure is provided with a description of the most rele-
vant procedures and estimation of measurement errors
and accuracy.

Calibration, error estimation, and extraction in
chromatographic studies are considered in [140]. A
critical review of current methods for quantitation of
essential oil components is provided in [141]. Recom-
mendations on the quantitative GC of essential oils
and aroma substances are given in [142].

Points of Concern in Quantitation by GLC
Issues of quantitative analysis by gas chromatogra-

phy have long been known. A number of approaches to
quantitative analysis have been developed, and they
are considered in detail in special papers. Several
guidebooks are available in Russian [143–145]. The
analyses often encounter instrumental problems related
to signal integration: errors in determining areas of low
peaks against noise, irregularly shaped peaks, peak over-
lay, digitization errors, etc. We will not dwell on these
technical difficulties, because their solutions are pre-
sented in manuals for gas chromatographic equipment.
Instead, we confine ourselves to briefly discussing key
questions in quantitative analysis.

Chromatographic quantitative analysis is based on
two assumptions: (1) the composition of a sample
injected into the chromatograph is the same as in the
mixture to be analyzed and (2) the amount of a sub-
stance is directly related to the magnitude (area) of the
corresponding chromatographic peak. Three methods
for quantitation by GC are known.

The absolute calibration method finds an empirical
correlation between the area of a chromatographic
peak and the amount of the substance injected to the
chromatographic column. The method demands a
reference, that is, an analyte sample of known purity.
In this method, conditions of analysis (chromatogra-
phy and detection) in calibration and study of an
unknown sample should match exactly.

In the internal normalization method, the total
area of all chromatographic peaks is taken to be 100%,
and the content of an individual component is calcu-
lated as the relative area of the corresponding peak.
This method is applicable in cases where (1) the chro-
matogram contains peaks of all components present in
the mixture, (2) the detector sensitivity is constant for
all components analyzed, and (3) the detector signal
linearly depends on the substance amount. In prac-
tice, these conditions all together are never met,
because almost always some components are invisible,
and any detector is selectively sensitive. Therefore, the
internal normalization method as it is described pro-
vides only a semiquantitative assessment of the con-
tents of components4. The simplest way to ensure a
reasonable approximation of the result to actual com-
ponent contents is to apply correcting factors (calibra-
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tion factors or detector response ratios), which make
allowance for different sensitivities of the detector to
sample components. The difficulty is that correcting
factors are required for all components of the mixture to
be analyzed. This requirement can hardly ever be met
in practice; therefore, various assumptions and
approximations are resorted to.

The internal standard method compares the area of
the chromatographic peak of an analyte vs. the area of
the peak of an internal standard, which is a known
substance whose known quantity is added to the mix-
ture. The analyte concentration is calculated by using
correcting factors to take into account different
responses of the detector to the internal standard and
the analyte. The advantage of this method is that the
contents of analytes can be measured without knowing
the nature of the rest of the mixture. The disadvantage
is the demand for an internal standard meeting a set of
requirements, and it is often difficult to choose such a
standard for quantitative analysis of complex mixtures.

The standard addition method is employed when
no substance can be chosen as an internal standard
(see above). A certain amount of a standard analyte
sample is added to the mixture to be analyzed, and the
content of the analyte is determined by comparison of
the original chromatogram and the chromatogram
with the additional analyte amount. The method suf-
fers some disadvantages: (1) a standard sample of the
analyte or a set of standard samples for quantitative
analysis of components should be available; (2) multi-
ple experiments with standard addition of different
compounds should be performed to quantitate several
components.

Detectors for GLC

Reference data for quantitative analysis of GC may
have been obtained with different detectors, and one
should always bear in mind features and limitations of
this detection type. Correcting factors, which are
functions of the response of a detector to a particular
substance, are invoked to obtain quantitative data
[146]. Response factors obtained for one detector type
in different devices vary broadly. Response factors
depend not only on the nature of the analyte itself but
also on some properties of the analyzed sample and
analysis settings. For instance, response factors of var-
ious monoterpenes vary with substance concentra-
tion, and the concentration functions are different for
different monoterpenes, counterintuitively varying
from one to another [147]. For the electron capture
detector, response factors depend on carrier gas f low
in a queer manner [148]. Response factors are unique
for this detection method, and they cannot be carried

4 For this reason, special journals with an increased focus on the
analytical side, such as The Flavour and Fragrance Journal,
refuse to accept papers in which compositions of volatiles and
essential oils are obtained by simple internal normalization.
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over from one detector type to another. In some cases,
response factors are different in different equipment
assemblies with identical detector types [149].

Thermal conductivity detector. The thermal con-
ductivity detector (TCD, or katharometer) [150] is
inferior to most other detector types in sensitivity, but
it is still in common use owing to its universality. The
response of a TCD depends on carrier gas f low, carrier
gas pressure in the measurement cell, bridge current,
detector temperature, and sample mass. With all these
parameters precisely controlled, the analysis can be
highly accurate and reproducible [151]. It should be
remembered that the relative response of this detector
depends on the device design; therefore, the calibra-
tion of a TCD with reference to reported response fac-
tors may cause significant errors in concentration
measurement [149].

The calculation of relative molar coefficients for
TCD response in gas chromatography has a long his-
tory [152]. Analyses of mixtures of fatty acid methyl
esters by GLC show that the correcting factors for
quantitative analysis in the isothermal and tempera-
ture-programmed modes differ [153]. The model of
quantitative structure–property relationships (QSPR)
can be employed for predicting response factors for
TCDs. It has been shown that the application of mul-
tiple linear regressions to a certain set of structure
descriptors (molecular weight, bond length sum,
polarizability, electronegativity, etc.) provides a high
correlation between response factors and the set of
descriptors. This model allows quantitation of sub-
stances for which no experimental response factors are
available [154].

Flame ionization detector. The flame ionization
detector (FID) is among the commonest detectors in
GC [150]. Although it responds to nearly all organic
substances, its sensitivity to different classes may vary
three to fourfold [155]. It depends on molecular struc-
tural features of the compounds [156]. Studies of
response factors for 130 organic acid esters (ethyl, iso-
propyl, n-propyl, isobutyl, and n-butyl esters of fatty
acids C1–C20, aliphatic dicarboxylic acids C2–C12, ben-
zoic acid, and o-phthalic acid) showed that they varied
over a broad range: from 1.10 in ethyl esters of fatty
acids to 3.67 in n-butyl phthalate [157]. Certain diffi-
culties arise in the quantitative analysis of lower fatty
acids as methyl esters; therefore, it is sometimes more
convenient to analyze them as heavier esters, e.g.,
butyl [158]. Response factors were measured for ten
monoterpenes with p-cymene as an internal standard
and proved to be within 0.844–1.055. Exceptions were
limonene (0.938−1.266) and myrcene (0.681−0.813).
The underestimation of myrcene concentrations may
be related to its tendency for dimerization to
dimyrcene (camphorene) and polymerization at tem-
peratures above 200°C [147]. In analyses of complex
mixtures of terpenoids diverse in structure and proper-
ties and having different response factors, all compo-
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nents are divided into groups of similar substances and
calibration is done for one component from each
group; e.g., 2-carene for monoterpenes and carvone
for simple oxidized derivatives [159]. This procedure
lowers the detection limits and provides a satisfactory
accuracy of quantitation.

Several approaches to predicting FID responses are
known. One of the first, which is still in progress, is
based on the concept of effective carbon number [157,
160–164].

Another approach rests on the fact that analytes
burn during FID operation; hence, response factors
may depend on their combustion heats. Indeed, there
is a good correlation between response factors and
combustion heats [165]. As the combustion heats of
organic substances can be predicted by quantum
chemistry methods within a reasonable accuracy,
response ratios of FID can be efficiently predicted, as
shown by examples of volatile components of various
fragrances [166]. Analysis of silyl derivatives of bio-
molecules showed that the prediction of response fac-
tors on the basis of predicted combustion heat values
was among the few methods allowing quantitation of
volatiles without device calibration with pure refer-
ence compounds [167].

Still another approach utilizes molecular descrip-
tors such as the inner molecular polarizability index
(IMPIm) [168]. It was attempted to model FID
response factors by using an artificial neural network,
and the designed network demonstrated a satisfactory
predictive force [169]. Multiple linear regression with
an artificial neural network involving several molecu-
lar descriptors (molecular weight, number of vibra-
tional modes, surface area, and the Balaban index
[170]) provided a good prediction of response factors
for various classes of compounds [171].

It has been shown that the helium pulsed-discharge
photo ionization detector (PDPID) is more accurate
than FID in determining the percentages of hydrocar-
bons in a mixture. In addition, the former is more uni-
versal [172].

Mass-selective detector. The most numerous diffi-
culties arise in using the mass spectrometer as a detec-
tor for quantitative analysis [68, 88, 173]:

⎯The sensitivity of the mass-spectrometrical
detector in the record of a full mass spectrum is gener-
ally notably lower than that of FID, and it greatly
depends of the injection method [174].

⎯As the dynamic range of the detector is finite
(about 106), peaks of major components in complex
mixtures are distorted and low-intense components
are masked with noise. Both these facts generate sig-
nificant integration errors.

⎯The speed of the operation of the mass-analyz-
ing magnet is finite (Modern devices with the quadru-
pole mass spectrometer analyze two to ten spectra per
second.) As a result, the digitization of a chromato-
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graphic peak is inaccurate, and the integral intensity is
determined with a significant error.

⎯All other conditions being equal, the ion f low is
determined by ionization cross-section, which
depends on the broadly variable molecular structure
(shape). It means in practice that two compounds hav-
ing equal ionization cross-sections and entering the
ionization chamber in equal quantities produce differ-
ent amounts of ions and, consequently, different ion
flows and different areas of their chromatographic
peaks.

⎯A mass analyzer of any type transmits ions differ-
ently with different m/z values. Therefore, when equal
numbers of ions with two different masses emerge in
the ionization chamber, it does not necessarily mean
that ion f lows corresponding to these masses in the
mass-selective detector are equal. The difference in
ion flows is the greater the greater is the difference in
m/z values. Different mass analyzer types have specific
features in this regard. Owing to the specific location
of the secondary electron multiplier in the quadrupole
analyzer, the multiplication factor for heavy ions is less
than for light ones.

⎯Generally, for practical purposes, not the whole
mass spectrum is recorded, and ions with m/z less than
30 Da are cut off. Thus, two substances with equal
ionization cross-sections entering the ionization
chamber in equal quantities produce different integral
ion f lows in detection, and the difference in intensity
is the greater the greater are differences in the propor-
tions of the lightest and heaviest ions for these sub-
stances.

As in the use of other detector types (see above),
the application of the mass-selective detector to vola-
tile quantitation requires knowledge of the response
factors of particular components. Studies of the
dependence of the mass-spectrometrical detector
response on molecule structure show that this detector
is generally less sensitive to n-alkanes than to corre-
sponding halogenated derivative, and polyhaloge-
nated alkanes demonstrate a significant departure
from the additivity rule [175].

Standards and Standard Mixtures

Quantitation by gas chromatography requires stan-
dards, which are substances of known purity or mix-
tures of known compositions suitable for calibration.
Any substance meeting the following requirements
can be used as a standard: (1) chemical similarity
between the standard and compounds analyzed for the
standard being completely miscible with the sample
and for the chromatographic behaviors of the standard
and compounds analyzed being comparable; (2) stor-
ability and stability under analysis conditions; (3)
inertness to all components of the mixture to be ana-
lyzed; (4) purity determined by an independent
method and freedom from impurities whose peaks can
ol. 44  No. 7  2018
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overlap those of the mixture to be analyzed [142, 144].
For some mixtures, it is not so easy to choose a stan-
dard that would meet all these requirements [176].

The analysis and purity check of such standards
and mixtures for calibration are a special task, some-
times difficult. Various approaches to such analyses
are described in [177, 178]. There are methods saving
time for the preparation and analysis of standard mix-
tures [179]. A protocol for preparation and use of stan-
dards with concentrations within 1–10 ng/μL for
GLC quantitation of mono- and sesquiterpenes in
biologic f luids is proposed in [180].

For a variety of causes, many compounds are
unavailable as standards for quantitative analysis, and
in such cases, ambiguity is unavoidable. However, the
group-correlation method allows mitigating this
uncertainty and accurately quantitating mixtures con-
taining one or more unavailable components [181].

Quantitative NMR Spectroscopy
In contrast to chromatographic methods, quantita-

tive nuclear magnetic resonance (qNMR) spectros-
copy is a universal method for detection and quantita-
tion of analytes in mixtures as complex as they can be
[182]. In the analysis of plant extracts, qNMR is
apparently advantageous over common methods
based on chromatographic resolution [183]. The deci-
sive advantage is that qNMR measurements do not
require pure authentic standard samples of analytes.
The analysis can be done with any available pure sam-
ple of an organic compound as an internal standard
[184]. Another feature of NMR is that quantitative
measurements of several components can be done in
parallel [185] with a single standard [186]. It is possible
to conduct qNMR measurements even without any
standard when concentrations are calculated with ref-
erence to solvent signals [186].

ANALYSIS OF SPECIFIC TYPES
OF SUBSTANCES

Each type of volatile plant metabolites demands
special choice of the method and conditions for anal-
ysis with regard to physical, physicochemical, and
chemical properties of the compounds. Specific fea-
tures in analysis of various compound types by GC–
MS are described in [10, pp. 172–180]. To avoid dupli-
cating this guidebook, we confine ourselves to data
omitted from it or obtained after publication.

Normal Hydrocarbons
Normal hydrocarbons are a widespread group of

compounds obtained from living plants, plant mate-
rial, and fossil sources. Mixtures of normal alkanes are
ubiquitous components of plant epicuticular wax
[187]. Normal hydrocarbons are used as universal
standards in the calculation of retention factors in GC
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and in the calibration of columns for gel permeation
chromatography to determine important parameters
of oil fractions [188]. Normal alkanes are present in all
oil derivatives, fuels, and lubricants. Therefore, they
often pollute plant extracts.

The analysis of mineral oils and their fractions is of
special importance in chromatographic studies
because many key items of qualitative and quantitative
chromatographic analysis have been investigated by
the example of oil fractions. Studies of oil fractions
generated interesting approaches associated with the
simulation of distillation results in quantitative analy-
sis and use of correction factors [189].

Fatty Acids and Their Esters
Fatty acids are among the main intermediates in

primary metabolism. As a rule, they are not accumu-
lated in plants in a free form, rather, they are deposited
as triglycerides (fats) and involved in the synthesis of
various lipids [190]. Free fatty acids serve as signaling
molecules and, as such, participate in the regulation of
some enzymatic pathways [191]. Small amounts of
free fatty acids are present in plant epicuticular wax
[187, 192].

Instead of direct analysis of fatty acids, experi-
menters usually convert them to methyl esters. Meth-
ods for the analysis of the latter have been well devel-
oped, and the compositions of fatty acid fractions can
be determined in products from various sources [193].
Nowadays, the chromatographic study of fatty acid
methyl esters attracts great attention in connection
with the analysis of biodiesel [194–196], an increas-
ingly popular fuel.

Essential Oils
The application of chromatographic methods to

the study of the compositions of essential oils has been
greatly developed. The current state of the methodol-
ogy of essential oil extraction and analysis is reviewed
in [70]. The quantitative analysis of essential oils is still
difficult because most components are complex in
structure and unavailable as calibration standards. It
was found that quantitative data on essential oil com-
position obtained by GC–MS without correction for
response factors of particular components were of very
poor accuracy [197]. Recent advances in the instru-
mentation for the chromatographic analysis of essen-
tial oils are discussed in [4–7].

Owing to plant polymorphism and various ambient
factors, essential oil yields and compositions may be
widely variable within a single plant species [198–
200]. The composition of essential oil from a plant
species obtained in an experiment as compared to
reported data may astonish the scientist. The mis-
match is associated with at least two factors: the
already mentioned natural variability of plants and dif-
ferences in protocols of processing and analysis, gen-
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erating different sets of artifacts. In such cases, com-
parison with standard chromatographic profiles for
species at issue (chemotypes) can be helpful. Unfortu-
nately, standard chromatographic profiles are avail-
able only for commercial essential oils. As for wild
plants, the only summary on odoriferous plants of
southern Siberia was published in [14].

Terpene Hydroperoxides
We have already mentioned that products of ter-

pene oxidation during storage of essential oil are
potent allergens. In this regard, their contents in ter-
pene-containing products attract special attention.
The quantitation of terpene hydroperoxides is a diffi-
cult task, because conventional chromatographic pro-
cedures require standard samples of limited accessibil-
ity. Moreover, they should be stored under drastic
conditions (–78°C) because of their chemical insta-
bility. To overcome this difficulty, an approach based
on GC–FID analysis of silylated hydroperoxide deriv-
atives with response factor prediction has been pro-
posed [201]. This procedure is a satisfactory alterna-
tive to full calibration at concentrations below
500 ppm, although large deviations are observed in
analyses of essential oils and artificial perfumeries.
These deviations are related to the instability of
hydroperoxides, easily reacting with other compo-
nents, rather than to procedural errors. Thermolability
is another source of errors in the GC analysis of
hydroperoxides because heating is indispensable in
GC studies. To eliminate this difficulty, a simple and
sensitive method for quantitation of hydroperoxides in
linalool, linylal acetate, and limonene was developed
on the base of tandem liquid chromatography–mass
spectrometry (LC/ESI-MS/MS) [202].

Flavoring Substances
As essential oils and extracts are important ingredi-

ents of f lavorings, the requirements on the trade of
natural materials used for this purpose tend to toughen
[203]. In this regard, new approaches to proximate
analysis of volatiles in various aromatizing agents
without authentic standards are being developed to
avoid labor-consuming calibration [204].

In spite of the ubiquitous use of natural fragrances
and flavorings, one often loses sight of the fact that not
all natural components are harmless. Many natural
mixtures used to f lavor various products are fraught
with substances whose contents should not exceed
certain permissible limits because of their toxicity.
Although this was known for a long time, the first
comprehensive analytical study on this topic was pub-
lished no sooner than 2015, when the workgroup on
analysis methods, the International Organization of
the Flavor Industry (IOFI), elaborated a procedure for
rapid routine GS–MS assay of substances of this sort:
β-asarone, coumarin, menthofuran, methyl chavicol,
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methyl eugenol, pulegone, safrole, and α- and β-thu-
jones. The method was tested in several laboratories
and proved to be efficient [205].

Sesquiterpenoids. As noted above (see section
Two-dimensional and hyphenated methods), sesquit-
erpenoids are difficult to analyze. Although the iden-
tification of some widespread compounds (caryophyl-
lene\isocaryophyllene, humulene, longifolene, ger-
macrene, caryophyllene oxide, spathulenol, bisabolol,
etc.) by GC–MS is simple, the overwhelming major-
ity of sesquiterpenoids present problems because of
the similarity of their retention indices and mass spec-
tra. Just for this reason, in order to avoid misidentifi-
cation, the authors’ guide of the specialized Flavour
and Fragrance Journal notes that the match of reten-
tion indices and electron impact ionization mass spec-
tra is insufficient for the identification of unusual ses-
quiterpenoids; thus, the identification should be
proven by additional spectroscopic methods, GLC–
IR and/or NMR.

The quantitation of sesquiterpenoids is also a com-
plex task, because most compounds of this group are
unavailable as analytical standards.

Sousa et al. reported an example of the develop-
ment and validation of analytical protocols for quanti-
tative assay of key sesquiterpenes—β-caryophyllene,
α-copaene, and α-humulene—present in extracts
from plants of the genus Copaifera (family Legumino-
sae = Fabaceae) with 1,2,4,5-tetramethylbenzene as
an internal standard [206]. Many practically import-
ant sesquiterpenoids are multiple-function com-
pounds, unstable under GC conditions. Liquid chro-
matography with a single standard, curdione, allows
quantitation of key sesquiterpene derivatives present is
preparations obtained from curcuma (Curcuma spp.):
zedoarondiol, isozedoarondiol, aerugidiol, (4S,5S)-
(+)-germacrone-4,5-epoxide, curcumenone, neocur-
dione, germacrone, and furanodiene [207].

Analysis of Biogenic Volatiles in the Air

Volatile organic compounds are important for
atmospheric chemistry and biogeochemistry. Bio-
genic emissions constitute the greatest portion of vol-
atile atmospheric organic substances other than meth-
ane. In their analysis in the atmosphere, GC–MS has
a series of advantages over other analytical methods
[208]. However, precise quantitative calibration requires
standards, which are not always available. A special fea-
ture of the analysis of monoterpenes in the air is the
demand for standard mixtures of very low concentra-
tions. Protocols for preparation of such mixtures with
concentrations about 2 nM are described in [209].

A seven-parameter QSPR model was developed in
[210] to predict response factors of the mass-selective
detector for various chemical structures. The mean
error in the prediction of response factors was calcu-
lated by the cross-check procedure to be below 20%,
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which is satisfactory for an air volatile assay. Also, a
method for the quantitation of biogenic volatiles in the
air with FID employing the notion of effective carbon
number has been proposed [211].

In some cases, constant monitoring of biogenic
organic substances in the air demands a better time
resolution than in routine analyses. For this reason, a
completely automated method of fast gas chromatogra-
phy was developed to ensure closer control of the time
resolution of monoterpenes and some other terpenes
C9–C15 [71]. Reasonable accuracy with errors not
exceeding 12% for monoterpenoids and 25% for oxidized
sesquiterpenoids was achieved within 10–20 min.

CONCLUSIONS
As a result of the widespread occurrence of modern

GC instrumentation equipped with up-to-date com-
puterized tools for experimental data collection, pre-
processing, and analysis, a great portion of experi-
mental work on component identification and quanti-
tation, starting from sample injection to the reading of
data, is automated. Thus, the analysis of volatile and
semivolatile components of plant extracts becomes a
pleasure cruise. It should be kept in mind, though,
that the apparent simplicity of routine analyses char-
acterizes only technicality. Indeed, the modern hard-
and software considerably facilitate measurements
and minimize manual operations. Nevertheless, the
improvement of experimental techniques does not
change the basics of a method, and its intrinsic limita-
tions persist. Therefore, chromatographic or GC–MS
data obtained in the automated mode should undergo
unbiased revision by the experimenter to avoid misin-
terpretation in publications. Proper interpretation of
data demands that the entire history of the sample be
known and all manipulations with plant material from
collection to final sample preparation be most care-
fully documented. Otherwise, we cannot expect
meaningful results.
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