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Abstract⎯Over the past decade, tools of omics technologies have generated a large amount of data in various
repositories, which are of interest for meta-analysis today. Now, researchers in the field of proteomics and
peptidomics focus not on sequencing, but on functions performed by molecules and metabolic interactions,
in which the proteins or peptides participate. As a result of a single LC-MS/MS analysis, several thousand
unique peptides can be identified, each of which may be bioactive. A classic technique for determining the
peptide function is a direct experiment. Bioinformatics approaches as a preliminary analysis of potential bio-
logical functions are an important step and are able to significantly reduce time and cost of experimental ver-
ification. This article provides an overview of computational methods for predicting biological functions of
peptides. Approaches based on machine learning, which are the most popular today, algorithms using struc-
tural, evolutionary, or statistical patterns, as well as methods based on molecular docking, are considered.
Databases of bioactive peptides are reported, providing information necessary to construct new algorithms
for predicting biological functions. Attention is paid to the characteristics of peptides, on the basis of which
it is possible to draw conclusions about their bioactivity. In addition, the report provides a list of online ser-
vices that may be used by researchers to analyze potential activities of peptides with which they work.
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INTRODUCTION

Today, proteomics, including the subdivision of
peptidomics, is one of the rapidly developing areas of
biochemistry. These sciences study the totality of pro-
teins and protein fragments (peptides), their func-
tions, and interactions in living organisms [1–4]. The
main methods of analysis in proteomics and peptid-
omics are mass spectrometry, various electrophoretic
techniques, and liquid chromatography [3, 5, 6]. Spe-
cial algorithms are widely employed to identify and
further analyze peptides revealed by mass spectrome-
try. The data obtained allow for analysis of peptide
abundance in various samples (comparative peptid-
omics), determine the position of a peptide in a pro-
tein sequence, elucidate which proteases were involved
in the generation of the peptides, and predict struc-
tures and functions thereof [2, 3]. One of the possible
aims of such studies is the search for and analysis of
bioactive peptides that modulate physiological func-
tions through binding with specific receptors or other
targets [7].

There are various sources of bioactive peptides. On
one hand, there are endogenous bioactive peptides
that are synthesized in the cell as part of large prepro-
proteins, which are then cleaved and modified. They
comprise hormones and other signal peptides [8], as
well as neuropeptides [9]. Products of degradation of
the organism proteins, or degradome [10–12], is of
interest from the point of view of search for bioactive
peptides, as well as biomarkers, especially when active
degradation occurs upon a strong external effect on a
living system [13]. Moreover, products of translation
of short reading frames or products of long noncoding
RNAs, analysis of which has been gaining popularity
lately, also belong to endogenous peptides [14–16].

Another source of bioactive peptides are exogenous
molecules, for example, alimentary peptides [17]: milk
[18] and dairy products, e.g. cheese and yogurt [19,
20] are widely studied. Milk proteins are inert for the
human organism, however, some peptides formed
upon their cleavage by enzymes of the gastrointestinal
tract or hydrolysis by intestinal microbiota, are bioac-
tive molecules [21]. Biologically active peptides are
found in other food products of animal origin, such as
meat [22] and skin gelatin [23]. Plant food also pro-
vides bioactive peptides: wheat [24], soybean [25], rice
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[26], and amarantus [27]. Moreover, bioactive pep-
tides are obtained in vitro through modification of
existing substances or de novo synthesis thereof. Pep-
tides of crustaceans [28] and algae [29] are often used
for introduction of modifications.

Bioactive peptides can affect nearly all systems in
the human organism [30]. The cardiovascular system
is influenced by antithrombotic peptides, which
inhibit platelet aggregation and fibrinogen binding
[31], hypotensive peptides, which inhibit angiotensin-
transforming enzyme [32], and antioxidant peptides
able to scavenge free radicals (produced as by-prod-
ucts of cell oxidative metabolism) and inhibit lipid
peroxidation [25]. The nervous system is regulated by
opioid peptides, which are similar to enkephalins by
their structure and exhibit affinity toward opioid
receptors, thus causing opiate-like effects on brain
[33]. The digestive system is affected by peptides,
which by means of anionic amino acid residues in their
structure form soluble complexes with calcium, mag-
nesium, and other minerals [34]. The digestion system
is influenced by antimicrobial peptides exhibiting bac-
teriostatic (inhibiting bacterial proliferation) and bac-
tericidal (causing bacteria death) properties [18]. Such
peptides bind bacteria cell surfaces and thus inhibit
membrane function or destroy bacterial biofilms.
Moreover, some peptides have antiviral or antifungal
activity [30].

Antimicrobial peptides can replace antibiotics,
which become yet less efficient due to growing bacte-
rial resistance [35]. Antimicrobial peptides affect the
immune system. Besides, immunomodulatory pep-
tides are also immune system effectors that increase
phagocytosis activity of macrophages, stimulate pro-
liferation and maturation of immune cells, and
increase antibody synthesis [36]. Alimentary peptides
responsible for immunity modulation in chil-
dren/infants are due to this group [37]. Another group
is represented by immunosuppressing peptides, which
are used to suppress autoimmune diseases and lower
the risk of transplant rejection. Also, a large fraction of
immunomodulatory peptides is represented by pep-
tides capable of tumor-cell recognition and modula-
tion of their activity [38].

Today, studies aimed at searching for peptide drugs
are gaining in popularity [39–41]. Natural peptides
possess low immunogenicity and are able to penetrate
tissues better than proteins. Another advantage of nat-
ural bioactive peptides is their higher affinity to tissues
compared to synthetic agents, which ensures their
slower elimination from the organism [42].

Development of high performance automated sys-
tems for screening of peptides is a natural step in the
development of the area. Similar to pharmaceutical
studies, the search for peptides with certain types of
bioactivity should include accumulation of primary
data on the list of peptides, among which the target
compounds should be searched for, in silico filtration
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of the most likely active, synthesis of the candidates in
vitro, and testing them in experiments in vivo. Both
peptides identified in the course of a scientific study
and predicted by computational techniques can be
analyzed. In the area of automated manipulation with
biopolymers, Boles et al. suggested the concept of bio-
logical agent production on demand [43]. Bioinfor-
matics approaches to prediction of peptide bioactivity
are a natural and important complement to the con-
cept. These approaches are as much in demand as
molecular docking in pharmaceuticals.

The biological function of a peptide is established
in the course of experimental work: by adding the pep-
tide to cell culture [44] or searching for proteins the
peptide binds with by means of dihybrid analysis [45],
Förster resonance energy transfer (FRET) [46], or
coimmunoprecipitation [47]. These studies are rather
labor consuming and expensive. To improve their per-
formance, protein microchips are being used [48].

As a result of peptidome analysis, several thousand
unique peptides are being identified [3], each of which
potentially can happen to be a bioactive one, and no
one knows what its activity might be. Therefore, pre-
liminary filtration with bioinformatics approaches is
necessary for isolation of the most probable bioactive
peptides [3].

As of today, many algorithms for protein function
prediction have been created and are actively used
[49–54]. However, far from all of them can be applied
to analysis of peptide function. The reason is that most
of modern methods of protein function prediction use
their tertiary structure for analysis [55, 56]. Usually,
peptides are too short to form a stable spatial structure.
Attempts to apply methods of analysis based on
knowledge of protein–protein interaction networks
[54] also meet difficulties, since today little is known
on the place of peptides in these networks. Therefore,
special services are required to search for bioactive
peptides.

The review focuses on bioinformatics methods to
predict functions of bioactive peptides. It provides ref-
erences to databases of bioactive peptides and works
describing techniques to design a peptide analysis
algorithm that would be of interest to specialists work-
ing in the area. In addition, the plethora of examples
of peptide function studies and description of services
for target peptide function evaluation without the pro-
longed step of algorithm creation in the review will be
of interest for experimental research scientists.

APPLICATION OF STRUCTURAL, 
EVOLUTIONARY, OR STATISTICAL PATTERNS 

TO SEARCH FOR FUNCTIONALLY
ACTIVE PEPTIDES

Algorithms to search for bioactive peptides and
predict their functions can be divided into two large
groups, namely algorithms created using machine
 BIOORGANIC CHEMISTRY  Vol. 44  No. 4  2018



IN SILICO ANALYSIS OF PEPTIDE POTENTIAL BIOLOGICAL FUNCTIONS 369
learning techniques and those developed without
machine learning. From a historical perspective,
methods not utilizing machine learning appeared the
first. Their work is based on one of the three
approaches: search for similar fragments, search for
evolutionarily conserved motives, and search for sta-
tistical trends.

The first approach relying on search for similar frag-
ments in amino acid sequences of peptides remains the
simplest and most often used. Supposedly, similar
fragments perform similar functions since it has been
demonstrated that if amino acid sequences of proteins
are 70% similar, the probability that the proteins will
have the same function is over 90% [57]. Besides,
today, some short amino acid patterns of fixed length
associated with certain functions, or motives, are
known [58]. For example, short linear motifs, SLiMs,
are responsible for protein–peptide interactions in
eukaryotic cells [59], while D box and KEN box are
motifs of cyclosome that bind ubiquitin in the process
of protein degradation [60]. In general, the minimum
length required for an amino acid sequence to be
involved in a protein–protein interaction and immune
recognition is 5 amino acids [61]. Therefore, peptides
6 to 30 a.a. long with similar sequences are highly
likely to perform similar functions. The following
algorithms are most often used to search for similar
sequences: NCBI BLAST [62] for local alignment, T-
Coffee [63] or Clustal [64] for multiple alignment, and
HMMER [65] for search of weak homology or
sequence patterns. For example, these methods were
used to search for new peptides in crustaceans [66].
BLAST was used to align peptides of partially anno-
tated transcriptomes of Tigriopus californicus and Lep-
eophtheirus salmonis against peptides of known related
species, Calanus finmarchicus and Daphnia pulex. This
allowed for 82 new peptides to be discovered. Another
example is the search for bioactive peptides of amaran-
tus by homology with peptides of the BIOPEP data-
base [67]. Work on search for bioactive peptides
among peptide fragments obtained by in silico cleav-
age with the Cyprinus carpio fish stomach peptides in
the BIOPEP database can also be attributed to this
group [68].

Some researchers increase the number of potential
bioactive peptides by sequentially applying several
algorithms searching for similar motifs. In search for
conotoxins, which are toxins of carnivorous marine
cone-shaped snails, Lavergne and coauthors used pat-
terns of peptide sequences from known families of
conotoxins and the HMMER algorithm to search for
homology [69]. When validated on proteins from the
UniProtKB (UniProt Knowledgebase, http://uni-
prot.org/), specificity of the combined technique was
99.9%. Among additional criteria were used to dis-
cover bioactive peptides are annotations in protein
databases [70] and information on the absence of the
constant ordered secondary structure of a peptide,
which can be derived for instance from the IUPRED
RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY  V
server [71]. UniProtKB annotation was used in the
search for an antimicrobial peptide and determination
of its type [72]. In the process of a search for homolo-
gous sequences, all antimicrobial peptides contained
in the database of the Biochemistry Department, Uni-
versity of Trieste, were divided into clusters. The pro-
posed algorithm assigns a protein to a cluster using the
HMMER algorithm. Then, proteins for which func-
tional regions having been annotated (proproteins and
mature peptides) overlap with homologous regions of
the cluster by more than 90% are selected. Tenfold
cross validation of the algorithm on 81 peptides from
20 clusters showed an average sensitivity of 81% and a
specificity of 98.8%.

Other authors apply additional restrictions for bio-
active peptide determination. For example, Liu and
coauthors performed in silico proteolysis of Drosophila
melanogaster proteins at major insect protease restric-
tion sites in search for new bioactive peptides of
D. melanogaster [73]. Then, local alignment was used
to select sequences containing known bioactive pep-
tides or more than a single similar fragment. Besides,
initial D. melanogaster protein should have contained a
signal peptide. The search yielded 118 potential bioac-
tive peptides, 43 of which were known previously. Only
a single one of the previously known bioactive peptides
was not detected.

The second feature evidencing bioactivity of a cer-
tain peptide can be evolutionary conservation of its
sequence. For example, in the search for peptides reg-
ulating platelet function, a search for orthologs was
performed among vertebrates [74]. From almost three
thousand proteins expressed in platelets, 47 with
transmembrane domains were selected. To find func-
tional peptides, 10-a.a. long sequences located in cyto-
plasm close to the membrane and having orthologs
among vertebrates, were selected. This yielded 78 pep-
tides, 13 of which were experimentally proven to be
bioactive. A work by Michael and coauthors can also
be referred to this group; they used evolutionary con-
servation as an additional criterion to search for bioac-
tive peptides using motif resemblance [70].

The third group of algorithms not utilizing
machine learning is based on search for statistical
trends. Mainly, these trends are looked for among
amino acid sequences and physicochemical properties
because the latter define the functions performed by
bioactive peptides. For example, hypotensive peptides
are known to be obliged to have aromatic or basic
amino acid at the N terminus and positive and hydro-
phobic amino acids at the C terminus, since the effect
of most hypotensive peptides is based on the ability to
inhibit the angiotensin-transforming enzyme, which
requires this very structure to bind the enzyme [75].
Most antimicrobial peptides possess amphiphilic
structure since they interact with the anionic cell wall
and membrane of bacteria [76, 77].
ol. 44  No. 4  2018
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To find peptides exerting antimicrobial properties,
a table of amino acid proneness to antimicrobial effect
was constructed; the table contained the antimicrobial
activity of the bactenecin-derived peptides obtained by
sequential substitution of each of its amino acids by
one of the 19 remaining amino acids [78]. In a valida-
tion on 40 peptides either possessing or not the antimi-
crobial activity, the algorithm demonstrated 90% sen-
sitivity and 81% specificity.

MACHINE LEARNING-BASED ALGORITHMS
Machine learning algorithms are widely used to

search for bioactive peptides. In most cases, design of
a prediction algorithm includes the following stages:
generation of training, validation, and test sets, selec-
tion of parameters that will be used for prediction,
choice of machine learning algorithm, its training and
validation. Different kinds of software that search for
and predict bioactive peptides differ in terms of which
algorithm best fits the target, which parameters it uti-
lizes, and how good (regarding diversity and sample
size) was the training set. Let us consider each stage
separately.

Generation of the training set using open databases.
When a machine learning-based algorithm to predict
bioactive peptides is being designed, appropriately
formed training sets—of sufficient size, as well as
diversity—are of great importance. Inappropriately
selected data can result in an overfit algorithm, that is,
one that produces misleading results when applied to
data different from those used for training [79, 80].

Training sets are formed using open databases
exemplified in Table 1 or upon analysis of publica-
tions. For example, to study peptides involved in quo-
rum sensing (capacity for coordinated behavior in
some bacteria), for which there was only a single
ready-to-use database available when the algorithm
was being designed [81], data from publication [82]
were used. While open data on bioactive peptides are
rather abundant (Table 1), selection of peptides that
surely lack certain biological activity (negative con-
trol) is significantly hampered. Few databases contain
information on peptides that do not possess certain
activity [83–85] and in each work authors utilize a
unique approach to form the negative control set. In a
number of works, bioactive peptides with an altered
amino acid sequence are used as those lacking activity
[82]. Besides, peptides can be randomly selected from
a database containing a large number of various pro-
teins [86]. The latter approach is sometimes upgraded:
only those protein fragments are chosen whose anno-
tation lacks description of the biological activity of
interest. For example, when an algorithm predicting
peptide toxicity was being elaborated, random pep-
tides from the UniProtKB database containing no
words “toxin” or “allergen” in their description were
used as a negative control [87]. An algorithm predict-
ing antimicrobial peptides [88] utilizes only nonse-
RUSSIAN JOURNAL OF
creted peptides as peptides without biological activity
since it has been shown that most of natural antimi-
crobial peptides are secreted [89].

To exclude data redundancy leading to overfit,
peptides with similar sequences are removed [90]. One
of the examples of software performing such a filtra-
tion is the CD-HIT [91]. Moreover, oversampling or
undersampling approaches are often used in the pro-
cess of set generation to adjust sample size between
groups being compared. The approach was used by the
authors of an algorithm classifying antimicrobial pep-
tides [92].

Choice of parameters for machine learning. Three
characteristics are used as parameters to train the algo-
rithms: amino acid composition, presence of a motif
associated with a biological function, and physico-
chemical properties. Each of the parameters can be
utilized in several different ways.

The first type of parameter reflects the amino acid
composition of a peptide. These parameters can be
included in the algorithm in various ways. The sim-
plest variant is represented by the normalized amino
acid frequencies in the peptide. For example, an algo-
rithm predicting antibacterial peptides [135] is based
on amino acid composition. When being validated on
466 peptides from the UniProtKB database, the algo-
rithm showed 87.55% accuracy. Loss of information
on the amino acid sequence is a disadvantage of the
method.

In order to retain the information on amino acid
sequence in a peptide, a so-called pseudo amino acid
composition is used. In addition to amino acid com-
position the method utilizes hydrophobicity, charge,
and mass of the peptides. The method has been
applied to predict antimicrobial peptides and their
functional type in an algorithm with sensitivity of
97.3% and specificity of 92.1% [92]. Besides, normal-
ized frequencies of di- and tripeptides can be used. An
algorithm searching for quorum-sensing peptides [82]
utilizes the dipeptide composition approach. On a set
of 20 peptides from the Quarumpeps database, its
accuracy was 90%. Another approach relies on the use
of binary profile of patterns, which are matrices of size
20 by peptide length (in a.a.), where columns corre-
spond to positions in a peptide, and lines to the
20 amino acids. It contains 1 in cells where column
and line match and 0 where they do not.

An algorithm presented in a work by Tyagi and
coauthors [136] performs a search for anticancer pep-
tides based on binary profile patterns. Validation of an
independent set of 50 bioactive and 50 not bioactive
peptides demonstrated an accuracy of 89%. An inter-
esting approach was proposed in a paper devoted to
the elaboration of an algorithm to search for antican-
cer peptides [137]. The authors used a vector of
dimension 60, where the first 20 positions showed how
much an amino acid frequency differs from a random
distribution in the peptide, the second 20 positions
 BIOORGANIC CHEMISTRY  Vol. 44  No. 4  2018
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Table 1. Open data on bioactive peptides

Source name Link to a source Data stored

Antimicrobial and antiviral peptides

APD [93] http://aps.unmc.edu/AP/ Antimicrobial peptides and their activity

ParaPep [94] http://crdd.osdd.net/raghava/para-
pep/home.php

Antiparasitic peptides and their struc-
tures

CAMPR3 [95] http://www.camp3.bicnirrh.res.in/ Antimicrobial peptides

DBAASP [96] https://dbaasp.org/home Antimicrobial peptides, their activities, 
and structures

AVPdb [97] http://crdd.osdd.net/servers/avpdb/ Antiviral peptides

AVPpred [83] http://crdd.osdd.net/servers/avppred/col-
lection.php

antiviral and NOT antiviral peptides

DAMPD [98] http://apps.sanbi.ac.za/dampd/ Antimicrobial peptides

PhytAMP [99] http://phytamp.hammami-
lab.org/about.php

plant antimicrobial peptides

BACTIBASE 2.0 [100] http://bactibase.hammami-
lab.org/main.php

Bacteriocins, proteins and peptides 
produced by bacteria suppressing other 
strains of the same or related species

Bagel [101] http://bagel2.mol-
genrug.nl/index.php/bacteriocin-database

Bacteriocins

DEFENSINS Knowledgebase [102] http://defensins.bii.a-star.edu.sg/ Defensins, cationic peptides of 
immune system active against bacteria, 
fungi, and viruses

DADP [103] http://split4.pmfst.hr/dadp/ Protective peptides of 167 species of 
tailless amphibians

BaAMPs [104] http://www.baamps.it/ Peptides destroying bacterial biofilms

MilkAMP [105] http://milkampdb.org/home.php milk antimicrobial peptides

YADAMP [106] http://yadamp.unisa.it/ Antimicrobial peptides

Anticancer peptides

CancerPPD [107] http://crdd.osdd.net/raghava/cancerppd/ Anticancer peptides

TumorHoPe [108] http://crdd.osdd.net/raghava/tumorhope/ Tumor-migrating peptides

Immunology peptides

Immune Epitope Database [109] http://www.iedb.org/ Various epitopes

HPVdb [110] http://cvc.dfci.harvard.edu/hpv/ Epitopes of human papilloma virus 
antigens

AgAbDb [111] http://196.1.114.46:8080/agabdb2/home.jsp Protein and peptide antigens

SDAP [112] http://fermi.utmb.edu/SDAP/ Allergens

Allergome [113] http://www.allergome.org/ Allergens

Protegen [114] http://www.violinet.org/protegen/ Protective antigens

HSPVdb [115] http://srs.bioinformatics.nl/hspv/ Epitopes of human MHC and T cells

Hypotensive peptides

AHTPDB [116] http://crdd.osdd.net/raghava/ahtpdb/ Hypotensive peptides

ACEpepDB http://www.cftri.com/pepdb/ Food-derived hypotensive peptides
RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY  Vol. 44  No. 4  2018
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Toxins

HEMOLYTIK [84] http://crdd.osdd.net/raghava/hemolytik/ Hemolytic and NOT hemolytic peptides

ArachnoServer 2.0 [117] http://www.arachnoserver.org/mainMenu. 
html;jsessionid=6A4C5048824C690782B3-
BC72EFEB67D3

Spider toxins

ATDB [118] http://protchem.hunnu.edu.cn/toxin/ Animal toxins

DBETH [119] http://www.hpppi.iicb.res.in/btox/ Bacteria toxins

ConoServer [120] http://www.conoserver.org/ Conopeptides, peptides of marine 
carnivorous cone-shaped snails

Cell-penetrating peptides

CPPsite 2.0 [121] http://crdd.osdd.net/raghava/cppsite/ Cell-penetrating peptides, their 
secondary and tertiary structures

Others

PepBank [122] http://pepbank.mgh.harvard.edu/ Bioactive peptides

PeptideDB http://www.peptides.be/ Bioactive peptides of animal origin

StraPep http://isyslab.info:8090/CBPS/ Bioactive peptides

Peptide Atlas [123] http://www.peptideatlas.org/ Peptides detected in the course of mass 
spectrometry studies

BIOPEP [124] http://www.uwm.edu.pl/bioch-
emia/index.php/en/biopep

Bioactive peptides

SwePep [125] http://www.swepep.se/ Peptides detected in the course of mass 
spectrometry studies

SATPdb http://crdd.osdd.net/raghava/satpdb/ Therapeutic peptides: anticancer, anti-
virus, antiparasitic, antibacterial, drug 
delivery, and toxic peptides

WALTZ-DB [126] http://waltzdb.switchlab.org/ Amyloid fibril-stimulating peptides

Quorumpeps [81] http://quorumpeps.ugent.be/ Quorum sensing peptides

ELM [127] http://elm.eu.org/ Short linear motifs of protein–protein 
interaction

BDB [128] http://immunet.cn/bdb/ Peptides capable of binding with vari-
ous molecules, tissues, organs, and 
organisms

SPdb [129] http://proline.bic.nus.edu.sg/spdb/ Signal peptides

MBPDB [130] http://mbpdb.nws.oregonstate.edu/ Milk bioactive peptides

BactPepDB http://bactpepdb.rpbs.univ-paris-did-
erot.fr/cgi-bin/links.pl

Bacterial peptides

Brainpeps [131] http://brainpeps.ugent.be/ Peptides capable of blood–brain barrier 
penetration

EROP-Moscow [132] http://erop.inbi.ras.ru/index.html Human regulatory peptides

HMRbase [133] http://crdd.osdd.net/raghava/hmrbase/ Hormones and receptors

MAHMI [134] http://sing.ei.uvigo.es/mahmi/index.php Bacterial peptides

Source name Link to a source Data stored

Table 1.   (Contd.)
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reflected how much more frequent was an amino acid
in a certain fragment of a protein, and the last 20 posi-
tions were associated with the presence of clusters in a
sequence. Euclidean metrics was used to calculate the
average distance between amino acid sequences and
make a prediction using a support vector machine.
Sensitivity and specificity calculated on a set of
80 peptides were 95 and 97%, respectively.

The second type of parameters used to predict bio-
active peptides with machine learning algorithms are
motifs associated with a certain function. The algo-
rithms generate an estimate based on the presence of
certain motifs in a peptide. The strategy was used by
Gupta and coauthors during development of an algo-
rithm to predict anti-inflammatory peptides using a
support vector machine [138]. The method accuracy
was 78.1%. A similar method was applied to predict
peptide toxicity [87]. In a validation on a set of data
compiled from proteins of the UniProtKB database
using a keyword search, the algorithm showed 99.39%
sensitivity and 97.91% specificity.

Algorithms attempting to find one of known motifs
in a peptide have been created; if a motif is found, the
peptide is considered bioactive, if not, machine learn-
ing methods are further applied. The approach is uti-
lized by an algorithm predicting hemolytic peptides
[139]. If the peptide contains no known motifs associ-
ated with a certain biological activity, the algorithm
makes a prediction using a support vector machine
over various types of amino acid composition. The
algorithm sensitivity was 96.4% and specificity, 99.1%.

An original approach based on motif search was
used to elaborate an algorithm to search for peptides
binding the main histocompatibility complex (MHC)
types I and II [140]. It used a machine learning algo-
rithm to reveal frequently occurring motifs, including
not serial ones. If an amino acid occurred often after
another amino acid in a frame of preset length, the
event was considered a motif. The search proceeded by
progressive addition of amino acids, that is, first,
amino acids frequently encountered in peptides were
considered; then, those that follow them in a frame of
certain length; etc. The AUC metrics of the algorithm
was 0.897 for 9 and 10-a.a. long peptides. The AUC for
9-a.a. long peptides of MHC type I was 0.908 and
MHC type II, 0.779.

The third type of parameters that are used for
machine learning models to predict peptide func-
tions—physicochemical properties—usually utilize
one of the existing services: AAindex db [99], PaDEL
[142], as it has been done by Kumar and coauthors
[143], or peptide package in R [144], as in the work by
Meher and coauthors [145]. The resulting set of prop-
erties can be obtained with a simple averaging of phys-
icochemical values for each of the amino acids con-
tained in the peptide, as in the work of Andreu and
Torrent [146]. An algorithm to predict antimicrobial
peptides with an artificial neural network with sensi-
RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY  V
tivity and specificity at the level of 85% was created. A
more complicated procedure to construct parameters
based on physicochemical properties is the utilization
of autocorrelation, that is the relationship between the
properties of amino acid sequences within a single
peptide taken with a shift [147]. For example, in the
course of development of an algorithm predicting
allergens, physicochemical properties were trans-
formed into a single parameter by means of the auto-
and cross-correlation transformation [148]. Autocor-
relation can achieve better results through taking into
consideration the order of amino acids in the peptide
[149]. Typically, secondary structure, hydrophobicity,
isoelectric point, total molecular charge [145], prone-
ness to aggregation in vitro and in vivo, and chain
length [150] are used as properties.

In their work, Li and Wang proposed using chemi-
cal shifts of 1HN, 13Cα, and 15N in combination with
amino acid composition to predict anticancer activity
of peptides [151]. The choice of the parameters is sup-
ported by the fact that chemical shifts of the nuclei
depend on the secondary structure of peptides [152],
while peptide functions are determined by their struc-
ture. The algorithm has a sensitivity of 89.86% and
specificity of 96.12% with a jackknife validation on a
data set containing 138 positive and 206 negative
examples. Another way to use physicochemical prop-
erties was applied in a method to predict antibacterial
peptides with further determination whether they are
active against gram-positive or gram-negative bacteria
[153]. In the method, 20 amino acids were divided into
four groups based on their physicochemical properties
and assembled into motifs of k letters each. Then, the
k-mers were used to construct four types of the
parameter: a motif is present in a peptide; a motif is
present in a certain position of a peptide; a motif is
present in a certain position with a shift allowed; a
motif is present in a certain position relative to another
motif. Then, an evolutionary algorithm was used to
calculate additional parameters derived from the pre-
vious ones by means of logical operators. The AUC of
the algorithm was 0.95.

Many algorithms utilize not one but several param-
eter types simultaneously. For example, an algorithm
proposed by Kumar and coauthors to determine hypo-
tensive peptides uses physicochemical properties of
peptides, as well as their amino acid and atomic com-
position [143]. Notably, the algorithm utilizes individ-
ual sets of parameters for peptides as a function of the
peptide length. Cross-validation demonstrated that
the algorithm has a sensitivity of 78.14% and specific-
ity of 78.78%. Another algorithm, PeptideLocator,
using bidirectional recurrent neural network allows
finding amino acids potentially comprising bioactive
peptides in a sequence of the protein analyzed [154].
To predict bioactive peptides in this manner, Peptide-
Locator calculates secondary structure, availability to
solvent, structural motifs, and presence of disordered
ol. 44  No. 4  2018
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structures, as well as predicting the domain structure
of a protein using the Porter+ [155], IUPred [156],
and SMART [157] services. A fivefold cross-validation
demonstrated that the algorithm has a sensitivity of
82.33% and specificity of 83.50%.

Some authors build several algorithms based on
different parameters and choose the most efficient.
For example, developers of the AntiAngioPred [86]
service predicting peptides inhibiting angiogenesis
trained several algorithms operating the support vector
machine using such parameters as amino acid compo-
sition, dipeptide composition, and binary profile pat-
terns. The algorithm processed either the whole
sequence of a peptide or a certain number of amino
acids at its N and/or C end. In a tenfold validation, an
algorithm based on amino acid composition at the
peptide N-terminus demonstrated the best results. Its
sensitivity and specificity were 79.0 and 82.7%,
respectively.

In addition, special methods for parameter selec-
tion are used. For example, to select an optimal set of
parameters among amino acid composition and phys-
icochemical properties to predict cell penetrating pep-
tides, Wei and coauthors used the maximum rele-
vance–maximum distance methods [158]. To make a
prediction, the algorithm sorts all parameters by their
importance through maximization of importance
evaluated using the Pearson coefficient between a
parameter and bioactivity. Excessiveness is evaluated
using the Euclidean distance between the parameters.
Then, using sequential forward search, an optimal set
of parameters is selected. Final algorithm utilizes 290
parameters and demonstrates sensitivity of 90.5% and
specificity of 92.6%.

To calculate a parameter, the abovementioned
properties of peptide sequences are to be derived. To
do this, experiments or services for calculation or pre-
diction of molecular characteristics are used. Exam-
ples of such services are listed in Table 2.

Design of algorithms to predict bioactive peptides.
When parameters are chosen, they are used to build
one of many machine learning algorithms, including
support vector machines [196], random forests [158],
C4.5 [139], naive Bayesian classifiers [86], the k near-
est neighbor method [148], neural networks [146], and
gradient or adaptive boosting [137] (Table 3). Classifi-
cation algorithms can be used to predict the presence
of bioactivity or choose bioactivity type. In a work by
Lin and Xu, a random forest algorithm was used to
predict whether a peptide is an antimicrobial one and
if yes, whether it possesses antibacterial, antifungal, or
antiviral activity [92].

Algorithms utilizing multiple instance learning
deserve their own mention. This approach, for exam-
ple, was used to develop an algorithm predicting MHC
type II binding peptides [197]. In contrast to classic
machine learning techniques, this method uses sets of
parameters instead of individual characteristics. If
RUSSIAN JOURNAL OF
only one of the parameters of the set belongs to a class,
the whole set refers to the class. The peptide is consid-
ered a set, while parameters of the set are all 9- or 11-
mer sequences built from amino acids comprising the
peptide. The similarity of 9- and 11-mers is evaluated
using the BLOSUM62 matrix. Some positions in the
peptide k-mer, particularly the amino acids at posi-
tions 1, 4, 6, 7, and 9, are considered more important
and they are used for classification. The support vector
machine method is used for classification. Fivefold
cross-validation demonstrated that the AUC of the
algorithm was 0.777. One of the specific features of the
algorithm is that it takes not final parameters, but the
amino acid as an input. Algorithms based on N1-NN
neural networks also need no preliminary processing
of the peptide sequence [198, 199].

Table 3 provides algorithms predicting diverse bio-
logical functions of peptides created based on various
methods, either relying on machine learning tech-
niques or not.

MOLECULAR DOCKING-BASED METHODS

A separate class of methods is represented by meth-
ods of molecular modeling based on information on
the spatial structure of molecules allowing prediction
of the most probable orientation of a bioactive peptide
and its protein target upon interaction. As a rule, these
methods are used when the activity of a peptide has
already been revealed or predicted and the question is
how it works. On the other hand, when the molecular
target is known, it is possible to analyze a large number
of peptides and reveal those selectively binding the tar-
get. Therefore, molecular docking can be used for the
purposes of bioactive peptide search.

In contrast to small molecules, for which the space
of conformations is limited, the docking procedure for
larger, and thus more f lexible, peptides is more com-
plicated since their conformation can change consid-
erably upon interaction with protein. Hence, most
algorithms elaborated for molecular docking are not
applicable for peptides [212]. The algorithm for pep-
tide bioactivity analysis by docking in general com-
prises the following steps: determination of the most
probable conformation of a peptide, search for the
peptide binding site in the protein (can be omitted if
interaction with a known site is being investigated),
and determination of the complex structure and eval-
uation of the energy of complex formation.

The simplest services allow prediction of a protein
fragment that is involved in protein–peptide interac-
tion. For example, the PepSite online service belongs
to this type; it utilizes spatial position weight matrices
calculated over the large collection of known com-
plexes of peptides and proteins [213]. The service uses
peptide amino acid sequence and protein spatial struc-
ture data to predict peptide-binding site on protein
surface. Similar information can be obtained using the
 BIOORGANIC CHEMISTRY  Vol. 44  No. 4  2018
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Table 2. Services for analysis of amino acid sequences and calculation/prediction of certain properties

Source name Link to the source Functions

NCBI BLAST [62] https://blast.ncbi.nlm.nih.gov/Blast.cgi Local alignment
T-Coffee [63] http://tcoffee.crg.cat/ Multiple alignment
Clustal [64] http://www.clustal.org/ Multiple alignment
HMMER [65] http://hmmer.org/ Weak homology search
Lalign [159] http://embnet.vital-it.ch/soft-

ware/LALIGN_form.html
Search for several matching motifs in two amino 
acid sequences

Peptide Match [160] http://research.bioinformat-
ics.udel.edu/peptidematch/index.jsp

Search for accurate/precise peptide inclusion in 
UniProtKB

CompariMotif [161] http://bioware.ucd.ie/~compass/bioware-
web/Server_pages/comparimotif.php

Search for similar regular expressions

AAindex db [141] http://www.genome.jp/aaindex/ Physicochemical properties of amino acids
APDbase [162] http://www.roskamps.com/bioinfo/APD-

base/APDbase.php
Physicochemical properties of amino acids

PaDEL [142] http://www.yapcwsoft.com/dd/padelde-
scriptor/

Physicochemical properties

PepCalc.com [163] http://pepcalc.com/ Physicochemical properties
ProtParam [164] http://web.expasy.org/protparam/ Physicochemical properties
Prot pi https://www.protpi.ch/Calculator/Pepti-

deTool
Physicochemical properties

acACS Web Server [165] http://202.207.14.87:8032/fuwu/acacs/ind
ex.asp

Chemical shift

TheorChromo http://theorchromo.ru/ HPLC retention time
IPC [166] http://isoelectric.ovh.org/ Isoelectric point
SMART [157] http://smart.embl-heidelberg.de/ Search for domains
SLiMSearch 1.5 [167] http://bioware.ucd.ie/~compass/bioware-

web/Server_pages/slimsearch.php
Search for known short linear motifs of protein–
protein interactions

SLiMEnrich http://shiny.slimsuite.unsw.edu.au/SLi-
MEnrich/

Prediction of short linear motifs of protein–pro-
tein interactions

SLiMFinder [168] http://www.slimsuite.unsw.edu.au/serv-
ers/slimfinder.php

Prediction of short linear motifs of protein–pro-
tein interactions

SLiMPrints 3.0 [169] http://bioware.ucd.ie/~compass/bioware-
web/Server_pages/slimprints.php

Search for new overrepresented short linear 
motifs of protein–protein interactions

iELM [170] http://elmint.embl.de/index/ Prediction of short linear motifs of protein–pro-
tein interactions

SLiMPred 0.9 [171] http://bioware.ucd.ie/~compass/bioware-
web/Server_pages/slimpred_legacy.php

Prediction of short linear motifs of protein–pro-
tein interaction

DiLiMot [172] http://dilimot.russelllab.org/ Search for motifs

CD-HIT server [91] http://weizhongli-lab.org/cd-hit/ Clusterization

GibbsCluster-2.0 [173] http://www.cbs.dtu.dk/services/Gibb-
sCluster/

Alignment and clusterization

MEME/MAST 4.9.1 [174] http://meme-suite.org/ Search for motifs

AGGRESCAN [175] http://bioinf.uab.es/aggrescan/ Aggregation

TANGO [176] http://tango.crg.es/ Secondary structure, aggregation in solution

IUPRED [71] http://iupred.enzim.hu/ Presence of a stable secondary structure

PEP-FOLD [177] http://bioserv.rpbs.univ-paris-did-
erot.fr/services/PEP-FOLD/

Prediction of tertiary structure for peptides 5 to 
50 a.a. long
RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY  Vol. 44  No. 4  2018
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PEPstrMOD [178] http://osddlinux.osdd.net/raghava/pepstr-
mod/

Prediction of tertiary structure for peptides 7 to 
25 a.a. long

PROSPER [179] https://prosper.erc.monash.edu.au/ Protease cleavage sites
CleavPredict [180] http://cleavpredict.sanfordburnham.org/ Matrix metalloprotease cleavage sites
CutDB [181] http://cutdb.burnham.org/ Protease cleavage sites
PoPS [182] http://pops.csse.monash.edu.au/ Protease cleavage sites
Enzyme Predictor [183] http://bioware.ucd.ie/~enzpred/Enz-

pred.php
Prediction of proteases that yielded the hydroly-
zate

PepControls http://bioware.ucd.ie/~cyclops/Fer-
gal/tags/PepControls_release_ver-
sions/1.3/control_pep_website/control_pe
ptides.html

Prediction of control peptides

Phobius [184] http://phobius.sbc.su.se/ Prediction of signaling peptides
SignalP 4.1 [185] http://www.cbs.dtu.dk/services/SignalP/ Prediction of signal peptides in prokaryotic 

and eukaryotic proteins
sigcleave [186] http://emboss.bioinformatics.nl/cgi-

bin/emboss/sigcleave
Prediction of signal peptides in prokaryotic 
and eukaryotic proteins

Octopus [184] http://octopus.cbr.su.se/ Prediction of signal peptides
PrediSi [187] http://www.predisi.de/ Prediction of signal peptides in prokaryotic 

and eukaryotic proteins
TatP 1.0 [188] http://www.cbs.dtu.dk/services/TatP/ Prediction of signal peptides
ChloroP 1.1 [189] http://www.cbs.dtu.dk/services/ChloroP/ Prediction of chloroplast transit peptide
AACompSim [164] http://web.expasy.org/aacompsim/ Comparison of amino acid composition vectors
Virtual Ribosome 2.0 
[190]

http://www.cbs.dtu.dk/services/VirtualRi-
bosome/

Translation of DNA sequence into peptide 
sequence, search for open reading frames, start, 
and stop codon

TargetP [191] http://www.cbs.dtu.dk/services/TargetP/ Intracellular localization of eukaryotic proteins
Peptide Server [192] http://bioserver-1.bioacademy.gr/Bios-

erver/PepServe/
Clusterization and visualization of peptides

Peptigram [193] http://bioware.ucd.ie/peptigram/ Data visualization: peptide profile 
and alignment map

BlockLogo [194] http://research4.dfci.har-
vard.edu/cvc/blocklogo/index.php

Analysis of consensus sequence motif

WebLogo 3 [195] http://weblogo.threeplusone.com Analysis of consensus sequence motif
Blast2logo 1.1 http://www.cbs.dtu.dk/biotools/Blast2log

o-1.1/
Analysis of consensus sequence motif

Source name Link to the source Functions

Table 2. (Contd.)
PEP-SiteFinder algorithm, which predicts possible
peptide conformations, then performs docking mini-
mizing the binding energy, and evaluates the contribu-
tion of each of the amino acid residues into the inter-
action [214]. PEP-SiteFinder works much faster
because it requires fewer calculations since molecules
are viewed as rigid bodies.

Some algorithms require additional information
for analysis. For example, the proABC service allows
us to determine the antibody–antigen interaction site,
in addition to the antibody sequence and spatial struc-
RUSSIAN JOURNAL OF
ture of the molecules, accepts the organism of the
antibody origin and embryonic cell line, as well as the
length of the antibody hypervariable loops as the input
data [215].

The Peptiderive algorithm is also an interesting
one; it allows the search for a linear peptide region of
interaction in protein–protein complexes, which can
be used to design a drug inhibiting the protein–protein
interaction [216]. Input data include the structure of
the receptor and interaction partner complex. A slid-
ing frame of a preset size moves along the amino acid
 BIOORGANIC CHEMISTRY  Vol. 44  No. 4  2018
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sequence of the protein partner chain and evaluates
the binding energy with each resulting peptide. The
output of the algorithm is the peptide with the maxi-
mum binding energy. Then, the algorithm verifies
whether the complex could be made even stronger by
adding disulfide bonds in the peptide under study.

The most widely used methods perform the whole
modeling procedure receiving the amino acid
sequence of a peptide and protein spatial structure as
an input and predicting the protein–peptide complex.
An example of such a service is the CABS-dock [217].
The algorithm generates random spatial structures of a
peptide that are randomly arranged on a spherical sur-
face, the center of which coincides with the geometric
center of a protein. Then, using the replica exchange
method of the Monte Carlo algorithm, peptide bind-
ing to protein is modeled and 1000 complexes with
minimal energy are selected and clusterized. Clusteri-
zation yields 10 consensus conformations that are
reconstructed.

The spatial structure of a peptide can be generated
from three specific conformations: unfolded, alpha
helix-containing, and containing a polyproline helix.
For example, this approach is used in the pepAT-
TRACT protocol [218]. When the three possible con-
formations are created, the binding of each of them
with the protein is modeled; the molecules are consid-
ered as rigid bodies. After 1000 of the most successful
conformations have been chosen, the complex struc-
ture is optimized. When the algorithm was tested on 80
structures, approximately 70% of them were predicted
correctly. A similar approach was used in the HAD-
DOCK method [219]. If additional information about
the peptide is available, for example, chemical shifts,
intermolecular bonds, or mutagenesis, protein–pep-
tide interactions are subjected to various structural
limitations. After docking, the complex structure is
refined considering the aqueous environment. Testing
of the algorithm on 62 protein–peptide complexes
correctly predicted 70% of structures.

Another way to predict peptide structure is to
divide its sequence into segments. Analysis of short
fragments proceeds faster and resembles the process of
progressive binding between a protein with disordered
tertiary structure and a protein having a stable spatial
structure [220]. However, it also can be used for pep-
tide studies. The protocol of peptide–protein interac-
tion analysis [221] comprises the following steps:
description of a peptide with a set of short fragments
that have a similar amino acid sequence (short binding
motifs); docking of fragments as rigid bodies; and
structure optimization of the complex of fragments
assembled into a peptide using the Rosetta Flex-Pep-
Dock [212] algorithm which can consider conforma-
tional changes of the receptor and peptide. The
method defined 52% of structures in the course of
testing on 27 complexes.
RUSSIAN JOURNAL OF
In addition, the spatial structure of a peptide can be
determined by similarity with an existing structure, as
in the GalaxyTBM algorithm [222]. At the first stage
of the algorithm, a template complex is searched for in
the PepBind database [223] based on the homology of
protein structure and peptide amino acid sequence. At
the next stage, a model minimizing the interaction
energy is built. The algorithm was tested on 22 com-
plexes and predicted correctly 17 of them.

Molecular docking plays an important role in the
analysis of various epitopes, including the MHC type
II and antibodies. NetMHCIIpan-3.0 takes peptide
amino acid sequences as the input and uses a neural
network on pseudosequences of MHC type II to pre-
dict protein–peptide complexes [224]. A pseudose-
quence contains amino acids important for binding
that have been determined by alignment of tertiary
structures of the molecules. The method’s AUC is
0.847. Another algorithm uses the docking score-
based quantitative matrices for prediction. The matrix
is filled beforehand based on the analysis of various
peptides binding with MHC type II [225]. The sensi-
tivity of the algorithm is 70%.

CONCLUSIONS

The study of bioactive peptides is of interest both
for searching for new drugs and for determining the
action of known bioactive peptides in the human body.
To analyze biological functions of peptides, methods
of bioinformatics are being elaborated to make the
process more efficient. Algorithms determining
potential bioactive peptides can be developed using
machine learning techniques, however, the basis is
mainly provided by the analysis of several peptide
characteristics: amino acid composition, physico-
chemical properties, and functional motifs. Most
algorithms allow searching for peptides performing
one specific function, although there are methods
capable of determination of peptide bioactivity as such
and, further, more precise prediction of the bioactivity
type.

Some algorithms developed to predict certain
functions in practice are more universal than assumed
by design [198], which in future will probably allow
algorithms can alone determine a wide range of func-
tional activities. One of the important factors limiting
the development of bioactive peptide prediction is the
lack of information about known bioactive peptides.
Analyzing the trends in the development of protein-
function prediction algorithms, one may suppose that,
as data accumulate, methods based on the analysis of
the spatial structure of peptides and proteins as they
interact will evolve greatly. On the other hand, algo-
rithms allowing analysis based only on the amino acid
sequence of peptides are simpler to use and probably
will gain even broader popularity.
 BIOORGANIC CHEMISTRY  Vol. 44  No. 4  2018
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