Spectrophotometric Determination of Simultaneously Present Neptunium, Americium, and Plutonium in Aqueous Solutions

 $V. N. Momotov^{*a}, E. A. Erin^a, and A. Yu. Volkov^a$

*a Research Institute of Atomic Reactors, Zapadnoe shosse 9, Dimitrovgrad, Ulyanovsk oblast, 433510 Russia *e-mail: momotov@niiar.ru*

Received August 27, 2018; revised November 12, 2018; accepted November 14, 2018

Abstract—A spectrophotometric method was developed for determining simultaneously present Np, Am, and Pu in sulfuric and perchloric acid solutions. The molar extinction coefficients ε were determined. In the concentration ranges 1.0×10^{-4} –2.0 × 10^{-3} M for Pu and Am and 5.0×10^{-4} –1.0 × 10^{-2} M for Np, the overall error does not exceed 5%. The detection limits are 3.0×10^{-5} M for Pu and Am and 1.0×10^{-4} M for Np.

Keywords: spectrophotometric determination, spectrophotometric titration, americium, plutonium, neptunium, absorption spectrum, optical density, wavelength, molar extinction coefficient

DOI: 10.1134/S1066362219040106

Analytical determination of the mass content of Pu, Am, and Np is performed using diverse methods such as radiometric, mass-spectrometric, coulometric, activation, spectrophotometric, etc. [1–3]. The use of these methods for determining Pu, Am, and Np present simultaneously involves certain problems. For example, when using coulometric method, it is possible to reach very low (no more than tenth fractions of percent) overall error in the determination of the mass content of Pu [4] and Np [5], but the determination of Am in this case is impossible because of very high redox potential (E_0^p) of the Am(IV)–Am(III) couple in mineral acids [6]. The Am determination in mineral acids becomes possible in the presence of strong complexing agents, e.g., phosphate and phosphotungstate ions [7, 8]. However, such procedure is time-consuming and therefore hardly suitable for prompt monitoring. The use of isotope dilution followed by massspectrometric determination requires time-consuming sample preparation with preliminary partitioning of Pu and Am [9, 10]. The radiometric method allows measurement of tracer amounts of these elements, but problems arise, e.g., with the determination of 238Pu and ²⁴¹Am, because the α-particle energies in the decay of these radionuclides are virtually equal [11]. The radiometric determination of Np requires thorough removal of other α-emitting radionuclides because of relatively low specific α-activity of 237 Np (26.08 Bq μg⁻¹).

Analysis of samples containing Pu, Am, and Np

simultaneously (e.g., of spent nuclear fuel samples) becomes more and more necessary [9].

This study was aimed at the development of a simple and quick method for joint determination of Pu, Am, and Np without their preliminary separation.

EXPERIMENTAL

A ²⁴¹Am sample was purified to remove Pu, Np, and nonradioactive impurities by extraction chromatography using HDEHP [11, 12] and TOPO [13]. Monoisotopic 239 Pu and 237 Np samples were additionally purified using Dowex 1×8 resin [2, 3].

Perchloric, sulfuric, and nitric acids and sodium nitrite $(NaNO₂)$ were of chemically pure grade and were used without additional purification. All solutions were prepared using double-distilled water. Spectrophotometric measurements were performed using with Beckman DU-640 and Cary 5000 recording spectrophotometers.

The Pu, Am, and Np concentrations in the initial solutions were determined by independent methods characterized by low overall error.

The mass content of Pu and Аm was determined by isotope dilution mass spectrometry [9, 10]. The spike was prepared from branch standard samples prepared at the Khlopin Radium Institute from nitric acid solutions of 242 Pu and 243 Am.

In the case of Np, we used the radiometric method and spectrophotometric titration [14]. The $KMnO₄$ solution prepared using a standard solution was chosen as a titrant. This choice was governed by the fact that oxidation of NpO₂⁺ to NpO₂⁺ with potassium permanganate occurs quickly and quantitatively; furthermore, the presence of K^+ , MnO₄, and Mn²⁺ ions does not prevent spectrophotometric determination of both $NpO₂⁺$ at a wavelength of 980 nm and $NpO₂²⁺$ in the region of 1222 nm [3].

Neptunium was preliminarily stabilized in the pentavalent state by evaporating its solution in 1 M HClO₄, introducing excess NaNO₂, and precipitating $NpO₂⁺$ hydroxide with excess NH₄OH. The precipitate was separated by centrifugation, washed thrice with distilled water, and dissolved in $1 \text{ M } HClO₄$.

RESULTS AND DISCUSSION

It is known [1–3] that Pu, Am, and Np in mineral acid solutions have characteristic absorption bands with relatively high molar extinction coefficients. For example, $Am³⁺$ in perchloric and sulfuric acid solutions has a characteristic absorption band at 503; PuO₂²⁺, at 830; NpO₂⁺, at 980; and NpO₂²⁺, at 1222 nm. All these bands are well resolved, are analytical, and allow determination of the concentrations of these elements with high accuracy. Tenfold excess of UO_2^{2+} and NaNO₃, and also of Fe³⁺, Cr³⁺, and other metal ions does not interfere with the photometric determination of $PuO₂²⁺$ and Am³⁺, and nitrate ions up to a concentration of 2.5 M and a tenfold excess of UO_2^{2+} , PuO₂⁺, Fe³⁺, Cl⁻, F⁻, Cr₂O₇²-, MnO₄, SO₄²-, C₂O₄²-, citrate, and other ions do not interfere with the determination of $NpO₂²⁺$ [1–3]. When these ratios are exceeded, separation of the interfering ions from Np, Am, and Pu is required. AgO is widely used for quantitative oxidation of Pu^{4+} and NpO_2^+ to the hexavalent state for their quantitative determination [16–20].

First we recorded the individual absorption spectra of the Am³⁺, PuO₂⁺, NpO₂⁺, and NpO₂⁺ ions in perchloric and sulfuric acids. Figure 1 shows the absorption spectra of Am³⁺, PuO₂⁺, NpO₂⁺, and NpO₂⁺ in perchloric acid. In sulfuric acid solutions, the spectra are similar.

As can be seen, the analytical bands of the elements are well resolved and can be used for measuring their concentrations in the case of their simultaneous presence.

Fig. 1. Integral absorption spectra of (a) Am^{3+} (C_{Am} = 1.30×10^{-4} M), (b) PuO₂²⁺ (C_{Pu} = 2.34 $\times 10^{-3}$ M), (c) NpO₂² $(C_{Np} = 1.55 \times 10^{-3} \text{ M})$, and (d) NpO_2^{2+} $(C_{Np} = 1.64 \times$ 10^{-3} M) in 2.0 M HClO₄.

We have studied the influence of the spectrum scanning rate (*v*) on the optical density of the analytical bands (Table 1). As can be seen, the optical density of the characteristic absorption bands of PuO_2^{2+} , Am³⁺,

Table 1. Optical density (D) of $PuO₂²⁺$, Am³⁺, NpO₂⁺, and $NpO₂²⁺$ in various media as a function of the spectrum scanning rate (*v*)

Ion being	Medium	Wavelength,	v , nm min ⁻¹	D
determined		nm		
$PuO22+$			1200	0.178
	2 M HClO ₄	830.2	600	0.183
			240	0.187
			120	0.186
	$1 M H_2SO_4$		1200	0.042
		834.8	600	0.064
			240	0.067
			120	0.067
	2 M HClO ₄		1200	0.054
		503.0	600	0.063
			240	0.064
Am^{3+}			120	0.064
	$1 M H_2SO_4$	503.2	1200	0.351
			600	0.369
			240	0.380
			120	0.380
	2 M HClO ₄	980.0	1200	0.0538
			600	0.0554
			240	0.0544
			120	0.0552
$NpO2+$	$1 M H_2SO_4$		1200	0.2676
		981.0	600	0.2715
			240	0.2722
			120	0.2723
	2 M HClO ₄		1200	0.2378
			600	0.2389
		1222.0	240	0.2383
$NpO22+$			120	0.2383
	$1 M H_2SO_4$		1200	0.0562
			600	0.0555
		1227.0	240	0.0542
			120	0.0542

and $NpO₂⁺$ somewhat increases as the scanning rate is decreased from 1200 to 240 nm min^{-1} . At scanning rates of 240 and 120 nm min^{-1} , the optical densities remain constant within the measurement uncertainty. For the characteristic $NpO₂²⁺$ absorption band, the optical density slightly decreases as the scanning rate is decreased from 1200 to 240 nm. However, in the scanning rate range $240-120$ nm min⁻¹ the optical density of the $NpO_2^{2^+}$ absorption band also remains constant. Therefore, in the experiments on determination of the mass content of Pu, Am, and Np in solutions, we

Fig. 2. Concentration dependences of the optical densities of the absorption bands of (a) Am^{3+} at 503.0 nm, (b) $PuO₂²⁺$ at 830.2 nm, (c) NpO_2^+ at 980.1 nm, and (d) NpO_2^{2+} at 1222.0 nm: (1) 2.0 M HClO₄ and (2) 1 M H₂SO₄.

used the scanning rate of 240 nm min⁻¹.

We studied the observance of the Bouguer– Lambert–Beer law for the characteristic absorption bands of Am³⁺, PuO₂⁺, NpO₂⁺, and NpO₂⁺ in perchloric and sulfuric acid solutions. The results are shown in Fig. 2. As can be seen, the dependences are well fitted

Ion being determined	Medium	$C \times 10^4$ M	\boldsymbol{D}	ϵ	$\epsilon_{\rm av}$	
					L mol ⁻¹ cm ⁻¹	
		22.1	0.8421	381		
		11.1	0.4403	398		
	2 M HClO ₄	5.56	0.2138	387	393 ± 6	
		2.76	0.1060	391		
		1.38	0.0554	401		
Am^{3+}		0.69	0.0275	398		
		11.9	0.3780	316		
	$1 M H_2SO_4$	5.97	0.2186	366		
		2.98	0.1112	372	360 ± 13	
		1.49	0.0552	369		
		0.75	0.0275	368		
		13.4	0.4528	338		
		6.87	0.2110	307		
		3.43	0.1216	354		
	2 M HClO ₄	1.73	0.0618	357	345 ± 14	
		0.85	0.0309	360		
		0.48	0.0154	321		
		0.24	0.0078	325		
$PuO22+$		24.7	0.5574	226		
		12.4	0.2853	231		
		6.18	0.1427	231		
		3.09	0.0732	237		
	$1 M H_2SO_4$	1.55	0.0361	233	233 ± 5	
		0.78	0.0179	231		
		0.37	0.0090	233		
		0.28	0.0043	245		
		87.7	0.3852	43.9	41.4 ± 2	
		70.1	0.2910	41.5		
		58.5	0.2477	42.3		
		39.0	0.1496	38.4		
	2 M HClO ₄	19.5	0.0770	39.5		
		9.75	0.0413	42.4		
		4.88	0.0187	38.5		
$NpO22+$		1.63	0.0073	44.8		
		93.7	0.3574	38.1		
		75.0	0.2997	40.0		
	$1 M H_2SO_4$		0.2492			
		62.6		39.8		
		41.7	0.1628	39.0	39.0 ± 2	
		20.9	0.0834	39.9		
		13.2	0.0538	40.8		
		6.61	0.0249	37.7		
$NpO2+$	2 M HClO ₄	16.2	0.5127	316		
		11.2	0.3520	314		
		8.57	0.2696	315		
		5.72	0.1807	316		
		4.28	0.1373	321	319 ± 5	
		2.14	0.0692	323		
		1.07	0.0351	328		
		0.53	0.0171	323		
		0.27	0.0087	322		

Table 2. Optical density (D) of PuO₂⁺, Am³⁺, NpO₂⁺, and NpO₂⁺ solutions in various media as a function of the concentration of the element being determined (*С*). Scanning rate 240 nm min–1

Ion being determined	Medium	$C \times 10^4$ M	D	ε	$\varepsilon_{\rm av}$
				L mol ⁻¹ cm ⁻¹	
$NpO2+$	1 M H_2SO_4	10.0	0.2715	272	272 ± 5
		8.09	0.2163	267	
		6.79	0.1833	270	
		5.15	0.1351	262	
		2.58	0.0724	281	
		1.29	0.0357	277	

Table 2. (Contd.)

by straight lines at the PuO₂²⁺, Am³⁺, and NpO₂⁺ concentrations in the range from 1.0×10^{-4} to 2.0×10^{-3} M and NpO₂⁺ concentration in the range from 5.0×10^{-4} to 1.0×10^{-2} M.

In these concentration ranges, we determined the molar extinction coefficients ε of PuO₂⁺, Am³⁺, NpO₂⁺, and $NpO₂²⁺$ in sulfuric and perchloric acids and calculated the uncertainty of ε by analysis of variance [21].

Table 2 shows the optical densities in perchloric and sulfuric acid solutions as functions of the element concentrations. As can be seen, the suggested method

Fig. 3. Total integral absorption spectrum of Am^{3+} , $PuO₂²⁺$, and $NpO₂²⁺$ in 1 M H₂SO₄ (initial solution). Bands: (1) Am, (*2*) Pu, and (*3*) Np.

Fig. 4. Total integral absorption spectrum of Am^{3+} , $PuO₂²⁺$, and $NpO₂²⁺$ in 1 M H₂SO₄ (diluted solution). Bands: (*1*) Am, (*2*) Pu, and (*3*) Np.

allows determination of the mass content of Am, Pu, and Np at their comparable amounts. The molar extinction coefficients are relatively high, allowing analysis of low Am and Pu concentrations. The molar extinction coefficients of $NpO₂²⁺$ are lower than those of Am³⁺, PuO₂⁺, and NpO₂⁺ in perchloric and sulfuric acids. Therefore, the detection limit for Np(VI) is higher and the range of measurable concentrations is narrower.

However, cases when the amount of one or two components considerably exceed the amount of the other component(s) become more and more frequent in the practice. For example, in pyrochemical separation of Am and Pu their content in the sample being analyzed exceeds that of Np by a factor of tens and even hundreds, which considerably complicates determination of the mass Np content [22].

Figure 3 shows the total integral spectrum of all the three elements in a solution at the ratio C_{Pu} : C_{Am} : C_{Np} = $16.2 : 8.3 : 1.$

As can be seen, the Np amount is sufficient for its determination in the initial solution, because the optical density is in the range of values suitable for this method. In the case of Pu and Am, the optical densities are too high, so that the Bouguer–Lambert–Beer law is not observed and the concentration determination becomes impossible. Therefore, to determine Pu and Am, the solution should be diluted to obtain optical densities in the range 0.1–0.3. Figure 4 shows the integral absorption spectrum of the diluted solution.

Thus, we have developed a rapid spectrophotometric method for joint determination of Np, Pu, and Am. At Pu and Am concentrations in the range 1.0×10^{-4} – 2.0×10^{-3} M and Np concentrations in the range 5.0 \times 10^{-4} –1.0 × 10⁻² M, the overall error does not exceed 5%. The detection limits are 3.0×10^{-5} M for Pu and Am and 1.0×10^{-4} M for Np.

The procedure for spectrophotometric determina-

tion of Np, Am, and Pu is protected by the Russian patent [23]. The procedure has been tested and is widely used at the Research Institute of Atomic Reactors for determining the mass content of Pu, Am, and Np in solutions obtained in the course of the development of technologies for pyrochemical and hydrometallurgical SNF reprocessing.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

- 1. Myasoedov, B.F., Guseva, L.I., Lebedev, I.A., et al., *Analiticheskaya khimiya elementov. Transplutonievye elementy Am–Cm* (Analytical Chemistry of Elements. Transplutonium Elements Am–Cm), Moscow: Nauka, 1972, p. 138.
- 2. Milyukova, M.S., Gusev, N.I., Sentyurin, I.G., and Sklyarenko, N.S., *Analiticheskaya khimiya elementov. Plutonii* (Analytical Chemistry of Elements. Plutonium), Moscow: Nauka, 1965, p. 164.
- 3. Mikhailov, V.A., *Analiticheskaya khimiya urana* (Analytical Chemistry of Uranium), Moscow: Nauka, 1962, p. 104.
- 4. Momotov, V.N., Erin, E.A., and Chistyakov, V.M., *Radiochemistry*, 2011, vol. 53, no. 3, pp. 322–326.
- 5. Kasar, U.M., Joshi, A.R., and Patil, S.K., *J. Radioanal. Nucl. Chem*., 1991, vol. 150, no. 2, pp. 369–376.
- 6. Lebedev, I.A., Thermodynamics of formation of simple and complex ions of transplutonium elements in solutions, *Doctoral (Chem.) Dissertation*, Moscow, 1984, p. 310.
- 7. Chistyakov, V.M., Baranov, A.A., Erin, E.A., and Timofeev, G.A., *Radiokhimiya*, 1990, vol. 32, no. 3, pp. 128–132.
- 8. Trofimov, T.I., Kulyako, Yu.M., Lebedev, I.A., et al., *Radiokhimiya*, 1981, vol. 23, no. 5, pp. 1051–1053.
- 9. Erin, E.A., Momotov, V.N., Volkov, A.Yu., et al., *Radiochemistry*, 2017, vol. 59, no. 4, pp. 372–378.
- 10. Petrov, E.R., Bibichev, B.A., Domkin, V.D., et al., *Radiochemistry*, 2012, vol. 54, no. 4, pp. 379–382.
- 11. Metz, C.F. and Waterbary, G.R., *Treatise on Analytical Chemistry*, part II, section A, vol. 9: *The Transuranium Actinide Elements*, Interscience, 1962*.* Translated under the title *Analiticheskaya khimiya transuranovykh elementov*, Moscow: Atomizdat, 1967, pp. 87–97.
- 12. Erin, E.A., Momotov, V.N., and Baranov, A.A., *Radiochemistry*, 2017, vol. 59, no. 1, pp. 58–64.
- 13. Erin, E.A., Vityutnev, V.M., Kopytov, V.V., and Vasil'ev, V.Ya., *Radiokhimiya*, 1979, vol. 21, no. 1, pp. 100–104.
- 14. Charlot, G., *Les methods de la chimie analytique. Analyse quantitative minerale*, Paris: Masson, 1961, 4th ed. Translated under the title *Metody analiticheskoi khimii*, Moscow: Khimiya, 1966, p. 412.
- 15. Momotov, V.N., Erin, E.A., and Zakharova, L.V., *Radiochemistry*, 2017, vol. 59, no. 2, pp. 175–180.
- 16. Kosyakov, V.N., Yerin, E.A., and Vitutnev, V.M., *J. Radioanal. Chem*., 1980, vol. 56, nos. 1–2, pp. 83–92.
- 17. Davies, W. and Gray, W., *Talanta*, 1964, vol. 11, no. 8, pp. 1203–1211.
- 18. Simakin, G.A., Baklanova, P.F., Kuznetsov, G.F., et al., *Zh. Anal. Khim.*, 1974, vol. 29, pp. 1585–1588.
- 19. Momotov, V.N., Erin, E.A., and Chistyakov, V.M., *Radiochemistry*, 2011, vol. 53, no. 3, pp. 322–326.
- 20. Momotov, V.N., Erin, E.A., and Chistyakov, V.M., *Radiochemistry*, 2014, vol. 56, no. 3, pp. 302–307.
- 21. Laitinen, H.A. and Harris, W.E., *Chemical Analysis: An Advanced Text and Reference*, McGraw-Hill, 1975, 2nd ed. Translated under the title *Khimicheskii analiz*, Moscow: Khimiya, 1979, pp. 590–595.
- 22. Benedict, M. and Pigford, T.H., *Nuclear Chemical Engineering*, New York: McGraw-Hill, 1957.
- 23. Momotov, V.N., Erin, E.A., and Volkov, A.Yu., Patent RU 2 647 837, Appl. Febr. 22, 2017, Publ. March 19, 2018.

Translated by G. Sidorenko