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Abstract—New cases of integrable ninth-order dynamical systems that are homogeneous in terms of some of
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1. INTRODUCTION

It is well known [1–3] that a system of ordinary dif-
ferential equations can be studied more easily or can
sometimes be exactly integrated if a sufficient number
of its tensor invariants (not only autonomous first
integrals) are found. For example, the number of
required first integrals can be reduced if there is an
invariant differential form of phase volume. For con-
servative (in particular, Hamiltonian) systems, this
fact is natural when the phase f low preserves volume
with a smooth (or constant) density. A more compli-
cated situation (in the sense of smoothness of invari-
ants) occurs for systems with attracting or repelling
limit sets. For such systems, the coefficients of the
sought invariants have to include, generally speaking,
functions with essential singularities (see also [4–6]).
According to our approach, for an autonomous system
of order  to be exactly integrable, we need to know

 independent tensor invariants. Moreover, a
number of additional conditions have to be imposed
on these invariants to achieve exact integrability.

Important cases of integrable systems with a small
number of degrees of freedom in a nonconservative
force field were considered in [5, 7]. The present study
extends the results of [5, 7] to a larger class of dynam-
ical systems. Note that the emphasis in [5, 7] was on
finding a sufficient number of first integrals. However,
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it is well known that a system may sometimes not have
a complete set of first integrals, but it has a sufficient
number of invariant forms.

For systems of classical mechanics, the concepts of
conservativeness, force field, dissipation, etc., are
quite natural. Since this paper deals with dynamical
systems on the tangent bundle of a smooth manifold
(position space), we need to specify these concepts for
such systems in more detail.

An “overall” analysis begins with the study of
reduced equations of geodesics. By applying a proper
parametrization, the left-hand sides of these equations
are written as the coordinates of the acceleration of a
material particle, while the right-hand sides are set to
zero. Accordingly, quantities that are taken in what
follows to the right-hand side can be treated as gener-
alized forces. This approach is traditional for classical
mechanics, and now it is naturally extended to the
more general case of the tangent bundle of a smooth
manifold. As a result, we are able, in a sense, to con-
struct “force fields.” For example, introducing into
the system coefficients that are linear with respect to
one of the coordinates in the tangent space (with
respect to one of the quasi-velocities of the system),
we obtain a force field with dissipation of different
signs.

Although dissipation of different signs sounds con-
tradictory, we will nevertheless use it, taking into
account that, in mathematical physics, positive dissi-
pation means usual scattering of total energy, while
negative dissipation means kind of energy pumping (in
mechanics, forces ensuring energy dissipation are
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called dissipative, while forces ensuring energy pump-
ing are called accelerating).

Conservativeness for systems on tangent bundles
can be understood in the traditional sense, but the fol-
lowing has to be added. We say that a system is conser-
vative if it has a complete set of smooth first integrals,
which suggests that it does not have attracting or repel-
ling limit sets. If it does, then we say that the system
has dissipation of some sign. As a result, the system
possesses at least one first integral (if any) with essen-
tial singularities.

In this paper, a force field is divided into an internal
and an external component. The internal field does
not change the conservativeness of the system, while
the external field can introduce dissipation of different
signs into the system. Note that the form of internal
force fields is taken from the classical dynamics of a
rigid body (see also [5]).

Below, we present first integrals and invariant dif-
ferential forms for classes of ninth-order dynamical
systems that are homogeneous with respect to some of
their variables and in which a system with four degrees
of freedoms can be distinguished on its eight-dimen-
sional manifold. The force field of the system is
divided into an internal (conservative) and an external
component, which has dissipation of different signs.
The external field is introduced using some unimodu-
lar transformation and generalizes previously consid-
ered force fields.

2. HOMOGENEOUS SYSTEMS 
AND THEIR SYMMETRIES

Let , , , and  be the
phase variables in a smooth dynamical system whose
right-hand sides are homogeneous polynomials in 
and z with coefficients depending on α and β as fol-
lows:
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where  is a 9 × 15 matrix. Then, choosing a new
independent variable q ( , , )
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where  is the first row of the matrix ,
while  is the matrix  with the first row
deleted, i.e.,

In this case, Eq. (2) for  decouples, so eight remain-
ing equations can be treated as system (3) on the eight-
dimensional phase manifold N8{Z4, ..., Z1; .

3. NINTH-ORDER SYSTEMS 
WITH NO EXTERNAL FORCE FIELD

Consider the following ninth-order system (from
class (2), (3)):
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where ; ; and , ,
..., , , , , and  with

 are smooth functions. This system can be
treated as one with no external force field. Equation
(4) decouples, so Eqs. (5) can be regarded as an inde-
pendent system (with four degrees of freedom) on the
eight-dimensional manifold  =

 (the tangent bundle of the smooth
four-dimensional manifold , see also [7, 8]).

Let us examine the structure of system (5). For
simplicity, it corresponds to the following equations of
geodesics with 13 nonzero connection coefficients on
the tangent bundle  of the manifold

 (in particular, on the tangent bundle of a (four-
dimensional) surface of revolution, Lobachevsky space,
etc.; here, all possible  are Christoffel symbols):

(6)

Indeed, in the tangent space, choosing new coordi-
nates , ...,  of the form

(7)

we obtain the following relations (cf. (5)):

(8)
Note that Eqs. (6) are almost everywhere equivalent to
collection of (7), (8), which is present primarily in sys-
tem (5) (instead of (7), it is better to use the equalities

, , , and
).

Below are examples of problems leading to Eqs. (6).
(a) Systems on the tangent bundle of the four-

dimensional sphere. Here, it is necessary to distin-
guish between two cases of metrics on the sphere. One
case corresponds to the metric induced by the Euclid-
ean metric of the ambient five-dimensional space.
This metric is natural in studying the motion of a point
over this sphere. The other case corresponds to the
metric induced by symmetry groups typical for the
motion of a dynamically symmetric (five-dimen-
sional) rigid body (see also [9–11]).

(b) Systems on the tangent bundle of a more gen-
eral four-dimensional surface of revolution.

(c) Systems on the tangent bundle of the
Lobachevsky space in the Klein model.
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System (4), (5) also involves coefficients multiply-
ing the parameter . However, they do not violate
conservativeness, since system (4), (5) has s complete
set of (six) smooth first integrals.

If we consider general equations of geodesics on
the tangent bundle of a four-dimensional smooth
manifold, then, generally speaking, there are

 functions for n = 4, i.e., there are 40 coef-
ficients. It follows that the general problem of integrat-
ing the equations of geodesics is rather complicated.
These connection coefficients are supplemented with
functions (in our case, , ..., , , ,

 from (7)) determining coordinates on the tan-
gent bundle.

For this reason, as was noted above, our consider-
ation is restricted to “only” 13 nonzero connection
coefficients (  ones for n = 4) forming the
equations of geodesics (6). According to this number
of connection coefficients, we choose the number of
functions determining coordinates on the tangent
bundle, namely, this number will be equal to 7
(  for n = 4). Thus, we have 20 functions
characterizing only the geometry of the phase mani-
fold and coordinates on it.

How many are algebraic and differential conditions
( ) imposed on  = 20 functions (A(n) =

 for n = 4)? Note that these conditions
are sufficient for the complete integrability of the
equations of geodesics. In this paper, we impose

 conditions on available  = 20 functions.

The number  is composed of three terms:
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(11)

i.e.,  (in the general case, B3(n) =
). Conditions (11) are based on (9), (10),

due to which the number of arguments in some func-
tions decreases.

It can be seen that, in the general case, B(n) =
 = (n – 1)2 +  + 1,

moreover,  which suggests that the
number of “arbitrary” functions increases by exactly 
as compared with the number of conditions imposed
on them (here,  is the dimension of the considered
Riemannian manifold). In our case, .

As will be shown later, for the complete integrabil-
ity of system (4), (5), it suffices to know six indepen-
dent tensor invariants: six first integrals, six indepen-
dent differential forms, or a combination of integrals
and forms amounting to a total of six. Of course,
invariants (in particular, for the case of no external
force field) can be sought in a more general form than
the one considered below (cf. [5–7]). It will be shown
below that the complete set consists of six, rather than
eight, tensor invariants (in addition to the trivial one
being the vector field of the system itself [3]).

It is well known that a first integral of the geodesics

equations (6) rewritten as 
 is the smooth function  =

 but we represent it in a simpler form
by introducing suitable coordinates on the tangent
bundle, thus “flattening” the quadratic form on the
phase manifold.

It should be emphasized that Theorem 1 below
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imposes 16 algebraic and differential relations (9)–
(11) on 20 11 functions, namely, on 7 functions ,
..., , , ,  and on 13, generally
speaking, nonzero connection coefficients .

α
α

α
α

α
α

α Γ α β + α + α Γ α β ≡
α Γ α β + α + α β Γ α β ≡

α Γ α β + α
+ α β β Γ α β ≡

α Γ α β + β
+ α β Γ α β

2 1 2
4 1 1 1 11

2 2 2 2
4 2 2 2 1 1 22

2 3
4 3 3

2 2 2
3 2 1 2 33

2 2
1 12 1 1

2 2 1
2 1 1 22

( )[2 ( , ) ( )] ( ) ( , ) 0,

( )[2 ( , ) ( )] ( ) ( ) ( , ) 0,

( )[2 ( , ) ( )]

( ) ( ) ( ) ( , ) 0,

( )[2 ( , ) ( )]

( ) ( ) ( ,

f Df f

f Df f g

f Df

f g h

f Dg

f g

α
αα

≡
α Γ α β + β

+ α β β Γ α β ≡
α β Γ α β + β

+ α β β Γ α β ≡
Γ α β + α ≡

2 3
1 13 2 1
2 2 2 1

3 2 1 2 33
2 2 3

2 1 1 23 2
2 2 2 2

3 2 1 2 33

4

) 0,

( )[2 ( , ) ( )]

( ) ( ) ( ) ( , ) 0,

( ) ( )[2 ( , ) ( )]

( ) ( ) ( ) ( , ) 0,

( , ) ( ) 0,

f Dg

f g h

f g Dh

f g h

Df

3(4) = 7B
− +( 1)/2 1n n

+ +1 2 3( ) ( ) ( )B n B n B n −( 1)/2n n
−( ) ( ) = ,A n B n n

n

n
−(4) (4) = 4A B

+ Γ�� � �

4

, =1
( ) = 0,i i j k

jkj k
x x x x

…= 1, ,4,i Φ �( ; )x x

 � �

4

, =1
( ) ,j k

jkj k
g x x x

α1( )f
α4( )f β1 1( )g β2 1( )g β2( )h

Γ α β( , )i
jk
Theorem 1. If conditions (9)–(11) are satisfied, then
system (4), (5) considered on the product  ×

 has a complete set of six
smooth first integrals of the form
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Note also that the system of equalities (11) can be
treated as the possibility of transforming the quadratic
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of the art in this more general problem have been cov-
ered rather extensively (we note only [9, 10]). The
search for first integrals relies on the fact that the sys-
tem has additional symmetry groups.

4. INTRODUCING OF AN EXTERNAL FORCE 
FIELD WITH DISSIPATION 

VIA UNIMODULAR TRANSFORMATIONS

We modify system (4), (5) with two key parameters
,  by introducing an external force field. If

such a field is introduced by adding the coefficient

 to the equation for  in system (18), (19),
even though we set , the resulting system is, gen-
erally speaking, not conservative. Conservativeness
holds under the additional condition . However,
we extend the force field, assuming that , .
Additionally, (as before) the independent variable  is
changed to  according to the formula d/dt =
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where  is a parameter. Here, the coefficients of
the conservative component of the internal force field
contain the parameter b, while the coefficients of the
nonconservative component of the external field con-
tain the parameter .

The force field in the equations for  and  is
defined by the function . The force field is
introduced in the form of a two-dimensional column
with the first row containing the coefficients of the
equation for  and with the second row containing
the coefficients from the function . Thus, the
total force field (involving three parameters ,

, ) has the form

where  is a transformation with determinant  that is
unimodular for . Specifically, if  and

 or , then this transforma-
tion defines rotation by an angle of . Moreover, this
transformation introduces dissipation (of both signs,
see also [5–7]) into the system.

5. INVARIANTS OF NINTH-ORDER SYSTEMS 
WITH DISSIPATION

Now we will integrate the ninth-order system (18),
(19) under conditions (9)–(11), which ensure decou-
pling an independent a seventh-order subsystem.

As will be shown below, for the complete integra-
bility of system (18), (19), it suffices to know six inde-
pendent tensor invariants: six first integrals, six inde-
pendent differential forms, or a combination of inte-
grals and forms amounting to a total of six. Of course,
invariants can be sought in a more general form than
the one considered below.

Additionally, it should be emphasized that Theo-
rem 2 below (which also holds under more general
conditions) imposes 16 algebraic and differential rela-
tions (9)–(11) on 20 functions, namely, on 7 functions

, ..., , , ,  and on 13, gener-
ally speaking, nonzero connection coefficients

α− Γ α β + α
α− Γ α β + β
α
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α

α αβ β β
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1 3 3 1 4
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. In particular, a consequence of imposing 16

relations is the property .
Then, after making the substitutions given by (17)

for the phase variables, system (18), (19) splits as fol-
lows:

(20)

(21)

(22)

(23)

(24)

It can be seen that, for system (20)–(24) to be com-
pletely integrable, it suffices to indicate two indepen-
dent tensor invariants of system (21), one for each of
the systems (22) and (23) (after making suitable substi-
tutions for their independent variables) and two addi-
tional tensor invariants “linking” Eqs. (20) and (24)
(i.e., altogether there are six of them).

We impose some constraint on the force field.
Assume that, for some ,

(25)

and, for some ,

(26)

Condition (25) is called “geometric,” while condi-
tion (26) is called an “energy” one. Condition (25) is
called geometric, because, among other things, it
imposes a constraint on the key connection coefficient

, so that the corresponding coefficients of the
system are reduced to homogeneous form with respect
to  with the help of the functions  and 
involved in the kinematic relations. Condition (26) is
called an energy one because, among other things, the
(external) forces become kind of “potential” with
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jk
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respect to the “force” function , so that the
corresponding coefficients of the system are reduced
to homogeneous form (again with respect to ). It
is the function  that, in a sense, introduces dissi-
pation of different signs, or variable dissipation, into
the system (see also [12–14]).

Theorem 2. Assume that conditions (25) and (26) are
satisfied for some . Then system (20)–(24) has
a complete set of six independent first integrals (of which
one is smooth, while five, generally speaking, have essen-
tial singularities). Additionally, this system has six
invariant differential forms that are independent of each
other, but are coupled to the first integrals.

Indeed, using the homogeneous variables , ,
 and  from system (21) we

can derive the differential relations

(27)

which easily imply the first-order equation

(28)

Equation (28) has the form of an Abel equation
[15–17]. Specifically, for , it has the first inte-
gral

(29)

which, in the previous variables, is given by

(30)

To calculate the divergence of the vector field
, ,  = ln|ws +

, s = 1, 2, of system (20)–(24) with dissipa-
tion, we use the function  (obtained for sys-
tem (4), (5)). Then the compound system of equations
of characteristics for the equation

(31)

consists of system (20)–(24) (whose right-hand side is
multiplied by the function ) and the addi-
tional equation

(32)
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System (20)–(24), (32) of equations of characteris-
tics can be assigned the following relations: two
from (27) and

(33)

In the general case, the desired first integrals have
cumbersome expressions (in particular, if ,
then equality (29) is used). With the help of Eqs. (27),
we obtain an additional first integral of system (21)
having the structural form

(34)

Moreover, (for ) the first integral (34) is
found from the Bernoulli equation

The expression for the first integral (34) in terms of
a finite combination of elementary functions depends
primarily on the closed-form expression for .

Additionally, system (20)–(24) has a smooth first
integral, which, for example, for , is given by

(35)

First integrals for the independent (after making
substitutions for their independent variables) subsys-
tems (22), (23) have the form

(36)

where the functions , s = 1, 2, are given in (14),
(15). An additional first integral linking Eq. (24) is
found by analogy with (16):

(37)

In turn, Eq. (33) allows us to obtain a function
 defining an invariant

differential volume form. Indeed, we have the invari-
ant relation

−ρ λμρΔ
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It follows that a possible invariant differential vol-
ume form is given by

Thus, the general solution of the linear partial dif-
ferential equation (31) becomes

here,  is an arbitrary smooth function
of six arguments, where  are six indepen-
dent first integrals (35), (30), (34), (36), and (37),
respectively.

In particular, as six functionally independent solu-
tions of Eq. (31), we can use the functions

6. STRUCTURE OF INVARIANTS FOR 
DISSIPATIVE SYSTEMS AND APPLICATIONS

System (20)–(24) is a dynamical system with vari-
able dissipation [12–14]. For  it turns into a
conservative system equivalent to (4), (5). Under cer-
tain natural conditions, the latter system has two
smooth first integrals of the form (12), (13) in the
coordinates . Moreover, if  is not identically
zero, but , then system (20)–(24) under condi-
tion (26) has a first integral of the form

(38)

where  =  –
λΔ2(α)) is a family of functions depending on the
parameter .

Obviously, the ratio of two first integrals (38) and
(13) (in the coordinates ) is also a first integral of sys-
tem (20)–(24) if  is not identically zero, but

. However, for , each of the functions
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(39)

and (13) (in the coordinates w) taken separately is not
a first integral of system (20)–(24). Nevertheless, the
ratio of functions (39) and (13) (in the coordinates w)
is the first integral (30) of system (20)–(24) (for sim-
plicity, ) for any .

Overall, as was noted above, for systems with dissi-
pation, the property of functions as first integrals to be
transcendental (in the sense that they have essential
singularities) is inherited from the existence of attract-
ing or repelling limit sets in the system [4, 13, 14].

Now we consider important cases for the functions
,  determining the metric on the four-

dimensional sphere and for the function :

(40)

(41)
additionally, the following case is of interest in itself:

(42)

Case (40) forms a class of systems (18), (19) with
μ = 1 that correspond to the motion of a dynamically
symmetric five-dimensional rigid body at zero levels
of cyclic integrals in a nonconservative force field.
Specifically, for , the considered sys-
tem describes a geodesic f low on the four-dimensional
sphere. In the case of (40), if  then
the system describes the motion of a five-dimensional
rigid body in the force field  under the action of a
follower force [12]. In particular, if ,
Δ(α) = sinα, then the system is equivalent to a gener-
alized spherical pendulum in a nonconservative force
field (“placed in an incoming material f low”) and has
a complete set of first integrals with essential singular-
ities expressed in terms of a finite combination of ele-
mentary functions.

Case (41) forms a class of systems (18), (19) corre-
sponding to the motion of a point over a four-dimen-
sional sphere with a metric induced by the Euclidean
metric of the ambient five-dimensional space.

Case (42) forms a class of systems (18), (19) corre-
sponding to the motion of a point over the four-
dimensional Lobachevsky space in the Klein model.

In the last two cases, the function  runs over
some functional set.

To conclude, we make a remark on integrability. It
is well known that the concept of integrability is rather
diverse. In this paper, we have presented complete sets
of not only first integrals, but also invariant differential

Θ α
+ + λμ Δ α − λΔ α

v

v

1= 4 3
2 2 2 2

3 4 1 4

| ( ; ; , ; )

= ( ( ) ( )) = const
B b B w w

w w b w

κ −= 1 1 > 0b

α( )f α4( )f
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sin 1 sin

( ) 1, ( ) = sin ,

f

f

R

α ν ∈ α ≡ −
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42
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sin 1 sin

f fR

ν αα ν ν ∈ α ν α
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2
1

1 2 4 12
2

( ) = , , , ( ) = .f fR

Δ α ≡ α ≡( ) ( ) 0F

Δ α α α( ) = ( )/cos ,F

α( )F
α = α α( ) sin cosF

Δ α( )
forms for homogeneous systems of the ninth order.
These sets contain almost everywhere smooth func-
tions with essential singularities. In the case of conser-
vative systems, if invariants are determined by smooth
functions of their phase variables, then a sufficiently
general dissipative force field added to the system leads
to invariants whose smoothness is destroyed be the
existence of essential singularities in the system. Such
points characterize energy dissipation near themselves
if they are attracting and energy pumping if they are
repelling. The result is of additional interest, because
all this happens in different parts of the phase space,
but for the same dynamical system.

The above-given examples from applications are
also new nontrivial cases of closed-form integrability
of systems of geodesics and systems with dissipation
(see also [18–20]).
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