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Abstract—We consider inhomogeneous continuous-time Markov chains with vanishing perturbations. It is
proved that, under some natural conditions, the limiting regimes of the initial and perturbed chains coincide.
We obtain explicit estimates, which allow construction of the limiting regime of the perturbed chain, and
show how these results can be used in the analysis of several known classes of queuing systems.
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1. INTRODUCTION

In this paper, we consider inhomogeneous Markov
chains with intensities tending to prescribed values as

. More precisely, we assume that the infinitesi-
mal matrix  can be represented in the form

, where  as . Thus, if
the chains with intensity matrices  and  are
called original and perturbed, then we study the case
of vanishing perturbations. Such models arise primar-
ily in the case when the service and/or arrival rates
asymptotically approach some “optimal” values. Such
chains have been intensively studied since the 1970s.
However, a wide range of problems remains open (see,
e.g., [1–5], which present qualitative results). Below,
we prove that, under some natural conditions, the lim-
iting regimes of the original and perturbed chains
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coincide and, in contrast to previous works, obtain an
explicit estimate for constructing the limiting regime
of the perturbed chain. Additionally, we show how the
results can be applied to several classes of queuing sys-
tems.

2. BASIC CONCEPTS

Let X(t), , be an inhomogeneous continuous-
time Markov chain with at most a countable state
space ,  The transition probabili-
ties for X(t) are denoted as  = i},

. Let  be the
probability of the corresponding state of the chain and

 be the vector of state
probabilities. Assume that

(1)

where  are locally integrable functions on the
half-line  (transition intensities), h is a “small”
increment of time, and all  are o(h) uniformly
with respect to i, i.e., .

Setting  for  and aii(t) =
, we consider the matrix A(t) =

 made up of the functions . Assuming that

≥ 0t

{ }…0,1,  ,S < ≤ ∞0 .S
= =( , ) Pr{ ( ) | ( )ijp s t X t j X s

≤ ≤ ≤ ≤0 , , 0i j S s t ( ) ( ){ }= =Prip t X t i

= … T
0 1( ) ( ( ), ( ), , ( ))Sp t p t p t p t

( ){ }

≠

+ = =
+ α ≠=  − + α =




Pr | ( )
( ) ( , ) if

1 ( ) ( , ) if ,
ij ij

ik i
k i

X t h j X t i
q t h t h j i

q t h t h j i

( )ijq t
[ )∞0,

( )α ,i t h
( ) ( )α =sup ,i i t h o h

( ) ( )=  ij jia t q t ≠j i

≠ ≠
− = − ( ) ( )ji ij

j i j i

a t q t

( ( ))ija t ( )ija t
5



376 ZEIFMAN et al.
for almost all  (i.e., except for a set of measure
zero), we have a forward system of Kolmogorov differ-
ential equations, which can be written as a single vec-
tor equation, namely,

(2)

Note that  is the transposed infinitesimal
matrix of the Markov chain X(t).

In what follows, let ||⋅|| (or ||⋅||1) denote the usual l1

norm, i.e.,  for any vector x and ||B(t)|| =

 if . Let 

which is the set of all vectors with nonnegative coordi-
nates and a unit -norm. Since

for almost all , we can use the corresponding the-
ory (see, e.g., [6]), treating (2) as an equation in the
space l1. Specifically, the Cauchy problem for Eq. (2)
has a unique solution for any initial condition, and if

 then  for any  and any initial
condition p(s). Introducing z(t) = ,
we derive from (2) the equation

(3)

where  and

Now let  be a “perturbed” Markov chain with
the same state space as X(t), state probabilities ,
and the transposed infinitesimal matrix .
The deviations of the perturbed characteristics from
the original one are denoted by  and ,
respectively.

Recall that the Markov chain X(t) is weakly ergodic if
for any pair of vectors p*(t),  solving (2) with dif-
ferent initial conditions, it is true that 
as 

Let  and  be solutions of (2). Then, by
the definition of the vector z(t), we have the inequali-
ties
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where z*(t) and z**(t) are vectors corresponding to
p*(t) and p**(t).

In what follows, Eq. (3) is considered not only in l1,
but also in the embedded subspace

(with a suitable linear operator D; for more details, see
Section 3 below), which is denoted by , and the
norm in it, by . Then given some , ,
and any initial values p*(s), , if the inequa-
lity

(4)

holds for all , then such a Markov chain X(t)
is called 1D-exponentially ergodic (see [7]). Note that,
if X(t) has a stationary (i.e., time-independent)
regime, then X(t) is 1D-exponentially ergodic. Ergo-
dicity conditions, corresponding convergence esti-
mates, and their relationship with perturbation
bounds have been studied by numerous authors (see,
e.g., [5, 7, 8, 10, 11, 13, 15, 16, 18, 19, 21, 22]).

3. GENERAL ESTIMATES
Standard approaches to the study of continuous

time Markov chains are described in [7]. However,
they cannot be applied directly to the case of vanishing
perturbations. In this section, for the first time, we
present an estimate for solutions of Eq. (3) that makes
the subsequent study possible. For illustrative pur-
poses, the results are stated in explicit form after the
obtained estimates.

Consider the equation for the perturbed chain cor-
responding to Eq. (3):

(5)

which can be rewritten as

(6)

If  denotes the Cauchy operator of Eq. (3),
then solutions of Eqs. (3) and (6) can be written as

and

Assuming -exponential ergodicity, we obtain
. Introducing the notation
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, we have the following upper bound
in the  norm:

(7)

Obviously, the first term tends to zero as . To
estimate the second and third terms, the following
conditions are assumed to hold:

(А)  where the “perturbation”
 as ; moreover, without loss of gener-

ality, we may assume that χ is a continuous, bounded,
and monotonically decreasing function;

(В) 
Remark. Under the additional assumption on the

monotonicity of perturbations, the convergence of the
integral of the perturbation norm over the interval
from zero to infinity (this case was studied, for exam-
ple, in [5, 8]) is a stronger condition than tending to
zero.

For notational brevity, we set . Without
loss of generality, it can be assumed that ; other-
wise, we can use  as initial time.

To estimate the norm of the solution of the per-
turbed equation, the Cauchy operator of this equation
is denoted by . Then, in the  norm,

Next, writing the solution of Eq. (6) as

and assuming that  (for some )
for almost all , we obtain, in the 1D norm,

(8)

We choose an arbitrary  and an arbitrary
moment of time  such that . Since

the desired estimate follows from (7) and (8):

(9)

Since ε is arbitrary, inequality (9) guarantees that
the norm of the perturbation tends to zero as 
and yields an estimate for this convergence.
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Thus, the following result holds.
Theorem 1. Given a -exponentially ergodic Mar-

kov chain X(t) in a subspace , suppose that the
perturbed chain  has a perturbation norm tending to
zero as  so that conditions (A) and (B) are satis-
fied. Then  is weakly ergodic, it has the same limit-
ing regime, and estimate (9) holds.

Corollary 1. Under the conditions of Theorem 1, sup-
pose that the intensities of the original chain X(t) are
1-periodic. Then the limiting regime of the perturbed
chain  is also 1-periodic.

Corollary 2. Under the conditions of Theorem 1, sup-
pose that the intensities of the original chain X(t) are pro-
portional, i.e., all . Then the unperturbed
and perturbed chains, X(t) and , are both strongly
ergodic and have identical stationary distributions.

4. DERIVATION OF ESTIMATES FOR MARKOV 
MODELS OF QUEUING SYSTEMS

In the analysis of models of queuing systems, the
main role in obtaining particular values involved in
estimate (9) is played by inequality (4). A rather simple
and convenient method is one based on the logarith-
mic norm of a linear operator function (see [6, 9, 10]).
If the matrix of a linear system ) is
essentially nonnegative (i.e., its off-diagonal elements
are all nonnegative), then its logarithmic norm

 is given by . More-
over, for the corresponding Cauchy operator, the esti-

mate  holds.
If the matrix K(t) is not essentially nonnegative,

then the following approach is usually adopted. Con-
sider a matrix of the form

(11)

and the homogeneous system corresponding to (3),
namely,

(12)

Setting  yields the equation
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where , in contrast to B(t), can be
made essentially nonnegative for a broad class of mod-
els of queuing systems by choosing a “weight”
sequence  bounded away from zero (which
guarantees that ). If B*(t) can be made essen-
tially nonnegative, then the basic difficulty is associ-
ated with choosing a weight sequence that provides
accurate convergence rate bounds (see [10]). Note that
accurate convergence rate bounds correspond to the
most accurate perturbation bounds [22].

Now we describe the constructions corresponding
to some classical models.

We begin with the Erlang loss system 
(see [1, 2, 5, 7, 10]). In this case, the number X(t) of
customers in the system is described by a birth-death
process with a finite number of states, i.e., the transi-
tion intensities are given by  for all  if

 and  and ,
 It is well known that the process X(t) is

weakly ergodic if and only if .

For definiteness, consider the case of an essential ser-
vice rate. In this case, the transformation matrix is
finite. Put , . Then the corresponding loga-
rithmic norm is equal to  and, hence,

. Specifically, if the service rate

 is a 1-periodic function of time, then the values of
the unknown parameters on the right-hand side of (4)

are equal to ; .

Now we consider a nonstationary queuing model
with a unbounded waiting line and S servers 
(see, e.g., [12, 16]) with arrival and service rates being

 and , respectively. It is
well known (see [16]) that the process describing the
number X(t) of customers in the system is weakly ergodic

if there exists d > 1 such that .

Assume that S = 2 (in contrast to , this case is more
complicated; see, e.g., [9]). If we set  for 
where , in (11), then the logarithmic norm

 satisfies the estimate  –

dλ(t)). In the case of 1-periodic rates, estimate (4)

holds for a =  and for the cor-

responding value of M.

Interestingly, the same weight sequence 
can be used to investigate an entirely different queue-
ing model with an extraordinary arrival f low con-
trolling the length of the queue (see, e.g., [15, 17, 23]).
Although the infinitesimal intensity matrix has a com-
plex structure of the form

in the case of exponentially decaying probabilities  of
arriving a batch of customers of size i (i.e., for

), weak ergodicity is guaranteed with the loga-

rithmic norm estimate  for

. Then, for a 1-periodic service rate, esti-

mate (4) holds for a =  and the corre-

sponding value of M.

Note that similar transformations (with a signifi-
cantly more complicated choice of a weight sequence)
and the logarithmic norm method can be used to
obtain explicit convergence rate estimates and, hence,
estimates in the case of vanishing perturbations for
other classes of Markov nonstationary queueing

systems, including for models of the type 
[7, 20], queueing systems with catastrophes [9], sys-
tems with absorption at zero [13], and systems with
bulk arrival and service and state-dependent control
[9, 14].
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