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CONTROL PROCESSES

Optimization of Oscillations of Mechanical Systems
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Abstract—The problem of controlling oscillations near the equilibrium position of a scleronomic mechanical
system with several degrees of freedom is solved. One degree of freedom is not controllable directly, while the
others are controlled by servos. An original method for finding an optimal control of the oscillation amplitude
for the uncontrolled degree of freedom by choosing a control law for the other degrees of freedom is proposed.
The set of controlled coordinates can include both positional and cyclic coordinates. Compared to Pont-
ryagin’s maximum principle, the proposed method does not contain adjoint variables and significantly
reduces the dimension of the analyzed system of differential equations. The effectiveness of the method is
demonstrated as applied to a specific pendulum system.
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1. FORMULATION OF THE PROBLEM

Consider a scleronomic holonomic mechanical
system with kinetic energy

n
r=2% ahd, n22
i,j=

where 7 is the number of degrees of freedom of the sys-
tem, g; are the generalized coordinates, ¢; are the gen-
eralized velocities, and (g;) is a positive definite sym-
metric matrix dependmg on the coordinates. The

equations of motion of the system can be represented
in the form of second-kind Lagrange equations

oT

i(a_Tj _oT
dt\ 9¢q;

aqz‘

were ¢ is time and the positional generalized forces
0, =0(q,...,q,) are stationary. Suppose that the set
(¢,-.-,4,) consists of s position coordinates, followed
by (n — 5) cyclic coordinates. Taking into account the
arbitrariness in the numbering of the generalized coor-
dinates, we distinguish the first generalized coordi-
nate, which is denoted by x. The other coordinates are

redenoted as u; = q;,,, j=1,...,s — 1, and w, = g,
k=1,..,n—s, where u = (u,...,u,_,) is the vector of

=Q, i=1,.. 1

’nQ
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position coordinates and w = (w,..., w,_,) is the vector

of cyclic coordinates, so that EEEO and & =0,=0
Wi Wi
— 5. The kinetic energy
becomes

T=%{a“x +2x( H+T

where s is the number of position coordinates, includ-
ing the distinguished coordinate x, and

Z a/+1 r+lu LI

fori=1..,nand k=1,...,n

s—1

zal ol + zal stk Wi

Jj=1 =1

T*(x,u,u,w) = (

J.r=1
s—1 n—s
+ zzzajﬂ k+xu Wk + Z ak+s r+swkw
j=1 k= k,r=l1

In system (1), we distinguish the equation for the

coordinate x:
~9T _ Fixu),(2)

s—1 n—s
d . . .
I al 1X + al’- ILI- + al’ ka
dt[ 2l + 2o | =5
where u = (u,...,u, )€ R and Fx, u) = Q(x,
u,-+,u,_,). The coordinate x is used as an independent

variable on the interval of its monotonicity: x # 0.
Then Eq. (2) is transformed into

xdi[ Foouu, w)i] - pinuu, w)E = Faow), (3)
X
where u' = —du , W _d_w and

dx’ dx’
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s—1 n—s
fxuu',w) =a, + zal,jﬂu;‘ + Zal,s+kwllc,
j=1 k=1
p(x wu',w)

(aa“ z 01/+1 ' Zaals+k ]
o

T*(x5 u’ u bl W )
+
ox
Assume that u = u(x) and w = w(x) are given vec-
tors with bounded components:

m M
‘uj Sui(x) < u;

. j=1..
. k=1,

C))

\w,’;’ < W(x) < Wi

These vector functions are regarded as servo con-
straints imposed on the system. The generalized forces
0,,...,0, should be chosen so as to obtain the indi-
cated vector functions u(x) and w(x). Assume that this

has been done so that constraints (4) are satisfied and
we can write the equation

X

I k{F(x, u) + p(x,u,u’, w)x’
X 5

—x—[f(x u,u' w)x]}dx =

where X, is the initial value of the independent vari-
able x and AM(x,u,u',w') is an arbitrary function.
Equation (5) follows directly from Eq. (3). Note that,
if f(x,u,u',w") # 0, then Eq. (3) admits an integrating
factor [1]. We use it as A

dxj’ (©)

J. AF(x,w)dx — %[)’czf(x, wu', wHA(x,u,u', w’)]‘x =

_ . 2p(x,u,u’, w')
A= f(x,u,u , W )exp[—}[m
JS(x,uu',w') = 0.

Then equality (5) can be transformed into

or

j AF(x, u)dx
(7)

= %[f *(x, X, u, W, WA*(x, X, u, 0, W)]Eo ’

where

s—1 n-s

*
SHx X, w0, W) = a) X + Zalj-Hu + Zals+kwk,
Jj=1

AH(x, X, m, 0, W)
X 2 ' N
= f*(x,X,u,1,W)exp [—J- M dx] .

5 Suu’,w)

If x = x(x) vanishes, then the integral on the left-
hand side of (7) becomes improper, because the values
of w=u/x and w =w/x at x=0 can become
infinitely large. Nevertheless, formula (7) shows that
this integral exists and takes a finite value. Note that
the variables /* and A* do not involve such a singular-
ity. Additionally,

PN = (4, %0, W)

8
Xexp( e, ]Zo_ ®)
f(x,uu',w')
Assume that the force function
UGxu() = [ Fru@ur ©

has an isolated maximum with respect to x for u(t) = 0
and this maximum remains isolated when u(t)
changes. Consider the motion in a neighborhood of
this maximum. Suppose that the initial conditions are
chosen so that the equality %, = x(x,) = 0 holds when
x = x,. By the oscillation amplitude, we mean J =
X, — X, where x; > x, is the next value of x at which
X, = X(x;) vanishes. In this case, the argument of the
isolated maximum of the force function U(x,u())
belongs to the interval [x,, x;]. In the general case, this
argument can vary depending on the chosen vector

functions u(x) and w(x). At the endpoints of the inter-
val, it must hold that

X =% =0, (10)
and
S (X0, Xo, u(xp), 0(x)), W(xy))
= Zalmu (x) + Zal s+ Wi (X0), (11)

Jj=1
S, X, u(x),0(x), w(x;))

s—1 n—s
= Zal,jﬂuj(xﬂ + zal,s+kwk(xl)~
j=1 k=1

The task is to find piecewise continuous controls
u(x) and w(x) that maximize (minimize) the func-
tional J.

Now we consider the inverse motion of a pendulum
and introduce § = —x. Equation (2) becomes
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s—1 n—s
d : . .
=l a&- Qi — P A sikWe
dt = =

9T _ _p(-
% F(-£,u).

Equation (3) can be represented in the form

(12)

> d ' 1\E
_[f(_ » Uy U, ) ]
éd& HHu W) (13)

- p(=Euup, wpE = —F(-E ),

s—1 n—s
fg(—&» u, “g,Wg) =4a — Zal,ﬁ—lujé - zal,s+kwk§s
j=1 k=1

p{;(_&a u, u'ia w'&)

s—1

1| day, aal,j+1 ' < aal,s+k ,
== =+2 Uy +2 w
2(8& Z = I

aT* b 9 " '
N (x,u,u W).

g

Therefore, we obtain

: 21’&(_&: u, “'@W:’;)
Ao = fu-5 u,uz, whexp| ~ dg |, (14)
& fé(_ga u, u'ia W%)

and formula (7) can be rewritten as

:
j e F (=&, u)dE
£ (15)

. > é
SR VA SN R HE S Wi, .
where

s—1 n—s+1
f;*(—é &, u,u,w) = allg - Zal,jﬂuj - z @ 51 Wi
j=1 k=1
& & uuw) = f5(-E,E u i, W)

oo H 2p(5 uut, W) d&}_
So fE_,(_§5 u, u'éa w'é)

The oscillation amplitude has the form J = §; — &),

Where &>, & =8&)=0, §=&&)=0, and
&) =0 if Ee (&),&,). The task is to find piecewise
continuous controls u(§) and w(§) that maximize
(minimize) the functional J.
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2. OPTIMAL AMPLIFICATION (DAMPING)
OF OSCILLATIONS

Suppose that A is defined by formula (6). Then the
following theorems hold.

Theorem 1 (optimal amplification principle).
Assume that the motion of a system is described by Eq. (2)
and there exist two points x, and x, such that x, < x, and
X, = X, = 0. Then the following assertions hold:

(I) Necessary conditions for the optimality of controls
u = u, (1), w,,(x)) that maximize x,, while being con-
strained by (4), are the equations

u,, (x) = arg max|y(x, uy, uy, Wy, ) F(x,u)],

n—s (16)
Wy () = argmin {Z al,ﬁk(xl,uM)wk},
k=1
where y = Mx)sgn[Mx, — 0)].

(II) Necessary conditions for the optimality of con-
trols w = u,,(T), W,(x,) that minimize x,, while being
constrained by (4), are the equations

u,(x) = argmin[y(x,u,,,u,, w,)F(x,uw)],

n-s (17)
W,,(xp) = argmax| > (X, U)Wy |

k=1

where y = Mx)sgn[A(x, + 0)].

Theorem 2 (optimal damping principle). Assume
that the motion of a system is described by Egs. (2) and
there exist two points x, and x, such that x, < x; and
X, = X, = 0. Then the following assertions hold:

(I) Necessary conditions for the optimality of controls
u=u,(T), W,(x) that minimize x,, while being con-
strained by (4), are the equations

u,(x) = arg min[x(x, u,,, w,,, w,,)F(x,u)],
n—s (]8)
W, (x) = argmv_glx Zal,ﬁk(xl,um)wk ,
k=1

where y = Mx) sgn[A*(x, — 0)].

(II) Necessary conditions for the optimality of con-
trols u = u,,(x), W, (x,) that maximize x,, while being
constrained by (4), are the equations

uy,(x) = arg max{Mx, u,,, u),, Wy, ) F(x,u)],

n—s (19)
W) (X0) = argmin| D ay g, (o, Wy |,
k=1
where y = Mx)sgn[A* (x, + 0)].
These theorems are proved by applying formulas (7)

and (15), taking into account that g, > 0 in Eq. (2).
Consider, for example, assertion I of Theorem 1.
According to the general variational principle [2], the
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Fig. 1. Double pendulum.

multipliers A and A; involved in (7) and (15) play a sup-
porting role and do not participate in the optimization
process. They are used only for an equivalent transfor-
mation of the equations of motion. Suppose that the
coordinate value x = x, corresponds to the maximum
deviation of the system from the equilibrium position,
but the first equality in (16) is violated at some interior
point of the interval [x,, x;]. Then it follows from for-
mula (7) that the integrand in (7) can be increased at
this point by applying the control u, with the other
controls being fixed; as a result, the value of the veloc-
ity x; > 0 will increase as well. Then the new coordi-

nate value x = x; at which the velocity x vanishes will
grow. This contradiction proves the necessity of satis-
fying the first relation in (16). The second relation
in (16) follows in a similar manner from the fact that
the functions f* in (7), (11) depend linearly on the
velocities of the system.

Assertion II of Theorem 1 is proved by applying
formula (15), followed by interpreting the result in
terms of the independent variable x.

Theorem 2 is dual to Theorem 1, so the proof of the
former is analogous to the proof of the latter.

A detailed proof of Theorems 1 and 2 by applying
the first variation method can be found in [3].

3. EXAMPLE: A DOUBLE PENDULUM
OF VARIABLE LENGTH

A double pendulum (Fig. 1) consists of two rods.
One rod is attached to the fixed point O. Another rod
is hinged to the first one at a distance of / from its cen-
ter of mass. Let M denote the mass of the first rod, /
be the moment of inertia of the first rod about its cen-
ter of mass, and @ be the deflection angle of the first
rod from the downward vertical. The center of mass of
the first rod is at the distance a(f) from the point O. Let
m be the mass of the second rod, 7, be its moment of
inertia about its center of mass, b be the distance from
the point of suspension of the second rod to its center
of mass, y be the angle between the second rod and
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the extension of the first rod beyond the second one’s
suspension, and g be the acceleration of gravity. The
angle y and the distance a are regarded as controls
used to swing the system; they are bounded by admis-
sible values: y,, Sy < y,,, a, <a<ay.

The mechanical system described above can serve
as a simplified mathematical model for a person
swinging on a swing or for a gymnast swinging on a bar.

To describe the motion of the system, we introduce
an absolute coordinate system with the origin O at the
point suspension of the first rod, with the Of axis
directed vertically downward, and with the horizontal
Onm axis directed to the right coordinate half-plane.
Then the coordinates and velocities of the center of
mass of the first rod are given by

&1 =acosqo, nl = aSin(P,
&, =—apsin @+ dacoso,
N = a@cos@ + asin Q.

The coordinates and velocities of the center of mass
of the second rod are written as

&, =(a+1)cos@+bcos(Q+ V),
&2 =—{(a+ HPsin @ + b(Q + ) sin(Q + )] + dcos ,
N, = (@+)sin @+ bsin(Q + ),
M, = @+ DPpcos @+ b(G +\)cos(Q + ) + asin Q.

The coordinates of the center of mass of the system
are found to be

aM + (a+Dm bm
=——COosSQ@+ ———cos(p+ V),
S M +m ® M +m @+V)
aM +(@a+Dm . bm .
, = ————SsIn @ + —Ss1n + .
N M +m ? M +m (@+w)

The angular momentum of the system about the
point O has the form

K =+ Mo+ 1,(0+ W) + mE, —no&y)-
After rearrangements, we obtain
K=[I+ Ma* + m(a+1)(a+1!+bcosy)lp
+{I, + mbl(a+)cosy + b]} (¢ + ) — mabsin y.
The angular momentum equation is written as
a(f o
—I = F(p,a,
i (9,a,y)
= —g{la(M + m) + Im]sin @ + bmsin(Q + )},

(20)

where
S = +m@a+1)(a+!+bcosy)]
+{l, + mbl(a +[)cosy + bl}(1 + y') — ma' bsin,
and y' and 4" are the derivatives with respect to .
It follows from (6) that A = f.

Assume that 0 < b < a+ /. Apply Theorem 1(I).
Suppose that ¢, < 0 and ¢, > 0 are the left and right

DOKLADY MATHEMATICS  Vol. 105 No.1 2022
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boundaries, respectively, of the deflection angle ¢,

and let @ = @, at the initial time. It follows from (16)
that the best way of maximizing a positive oscillation
half-cycle is given by the rule

O+vy <-T,

Y if )

y=1-2_0 if ¢+y,<-T<o+y,,
2 2 on
Wm lf (p+Wm >_§;
_Jay i 0<0,
e, it @0

From the formula for f, it follows that, for
0 < b < a+1, the sign of A remains positive in any of
the cases listed in (21).

Apply Theorem 1(II). Now suppose that ¢ = ¢, > 0
at the initial time. Then, on the contrary, we need to
minimize the value @, of a negative half-cycle. It fol-
lows from (17) that the best regime for minimizing a
negative half-cycle is given by the formula

v i ey, >
J-o i oty <T<o+y,
(22)

vy if ¢+wM<§;

a, if

a =
a, if
Finally, the synthesis of control for optimal swing-
ing the double pendulum is as follows: after attaining
the maximum positive deflection, formulas (22) are

applied; after attaining the minimum negative deflec-
tion, formulas (21) are applied, and so on.

0<0,
¢©=0.

From Theorem 2, we derive a synthesis of control
for optimal damping of the double pendulum, namely,
after attaining the maximum positive deflection, for-
mulas (21) are applied; after attaining the minimum
negative deflection, formulas (22) are applied, and so
on.

It follows from Eq. (20) that, for b = 0, the angle y
becomes a cyclic coordinate. Then, to ensure amplifica-
tion, it suffices to use the rules for cyclic coordinates
given in Section 2. In the case when b > (a + /), the

a+l
parameter  can change its sign for [y| > arccos [— T}

mﬂwmgme¢+w=i§lbwddmmmmamxwe

use the constraints y,, > —arccos [— a_—l—l} and y,, <
arccos [— a—“}.
b
DOKLADY MATHEMATICS Vol. 105 No.1 2022

In the example considered above, we applied the the-
orem on the variation of the system’s angular momentum
instead of the Lagrange equations of the second kind.
The application of this theorem to angular coordinates
leads to equations equivalent to the Lagrange ones, but
containing fewer canceling-out terms.

CONCLUSIONS

Control algorithms derived from the necessary
optimality conditions (16)—(19) have been proposed.
These algorithms take into account the times at which
the optimization coordinate attains its extreme values
and use the direction of the corresponding half-cycle.
Optimality conditions (16)—(19) do not contain
adjoint variables in the sense of Pontryagin’s maxi-
mum principle [4]. This facilitates the application of
the indicated conditions for the considered class of
problems. As additional advantage of the method is
that an optimal control law is derived in the form of a
dependence on the optimization coordinate. By using
the proposed optimality conditions, it is possible to
obtain analytical solutions for some new nontrivial
model problems. As compared with other known
methods, the conditions for optimal control of the
oscillation amplitude proposed in this paper simplify
the solution of corresponding problems in the multidi-
mensional space of control functions. They are effective
for both amplification and suppression of oscillations.
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