
ISSN 1064-5624, Doklady Mathematics, 2021, Vol. 103, No. 3, pp. 118–121. © Pleiades Publishing, Ltd., 2021.
Russian Text © The Author(s), 2021, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2021, Vol. 498, pp. 27–30.

MATHEMATICS
On the Bellman Function Method
for Operators on Martingales

V. A. Borovitskiya,b, N. N. Osipova,c, *, and A. S. Tselishcheva,b

Presented by Academician of the RAS S.V. Kislyakov March 12, 2021

Received March 19, 2021; revised March 19, 2021; accepted April 6, 2021

Abstract—It is shown how to apply the Bellman function method to general operators on martingales, i.e., to
operators that are not necessarily martingale transforms. As examples of such operators, we consider the Haar
transforms and an operator whose Lp-boundedness implies the Rubio de Francia inequality for the Walsh sys-
tem. For the corresponding Bellman function, the Bellman induction is carried out and a Bellman candidate
is constructed.
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We consider functions acting on the unit interval
and, for brevity, write Lp instead of  and 
instead of  (in the latter case, we mean-val-
ued functions defined on the unit interval).

1. MOTIVATING EXAMPLES
In [1] Burkholder used the Bellman function

method (from optimal control theory) to obtain sharp
Lp-estimates of martingale transforms ( ).
First, we give two examples of operators on martin-
gales that are not martingale transforms.

The symbol “ ” is used to denote the relation of
“being a dyadic subinterval,” and J± denotes the left
and right halves of an interval J. Consider the Haar
system

It is easy to see that, for any  we can define
a unitary operator
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that establishes a one-to-one correspondence between

maps the other Haar basis functions into themselves,
and has the property

Note that the matrix in the Haar basis that defines the
action of the operator Hm on the first  basis vectors
coincides with the matrix of the Haar transform of
order  with suitably rearranged columns. It will be
shown below that, for , the Lp-boundedness
(uniform in m) of the operators Hm can be established
within the classical operator theory on martingales
(“discrete” version of the theory of Calderon–Zyg-
mund operators). However, the Bellman function
constructed by Burkholder in [1] does not suffice to
obtain such boundedness.

Another example is as follows. Let  be
a standardly ordered Walsh system. Consisting of all
possible products of Rademacher functions, this sys-
tem resembles in properties the Fourier basis of expo-
nentials and, in some sense, can be viewed as its dis-
crete analogue (for more details, see, e.g., [2, Sect. 4.5]).
An example supporting this analogy is the following
result of [3], which states that the Rubio de Francia
inequality [4] can be extended from the Fourier basis
to the Walsh system.

Theorem. Let  be at most a countable set of func-
tions whose Walsh spectra lie in pairwise disjoint inter-
vals :
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If , then

where Cp is a constant independent of the collections 
and {Im}.

With the help of combinatorial arguments, the
proof of this theorem is reduced in [3] to checking the
Lp-boundedness of an operator that is our second
example. Before describing this operator, we present
two well-known simple properties of Walsh functions.

1. For a function , its martingale differences
 in the standard dyadic filtration coincide with the

Walsh multipliers for the intervals  and

, k > 0:

2. For  the “exponential” property
 holds, where  is bitwise

XOR (the corresponding bits in the binary decompo-
sitions of a and b are summed modulo 2). In other
words, there is an isomorphism between two groups:

.

Let (j, k) be multi-indices running over a subset
 and  be numbers such that the sets
 are pairwise disjoint and completely cover .

Consider an operator G that puts parts of the Walsh spectra
of functions from the sequence 
in these sets and then combines the results into a single
function:

The above-presented theorem from [3] is reduced to
the estimate

with a constant Cp depending only on p. As in the case
of the operators Hm, this estimate follows directly from
classical operator theory on martingales, but does not
follow from Burkholder’s results [1].
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2. FORMULATION OF THE PROBLEM

Let , where 1 is in the ith posi-

tion (the functions  are defined in a similar manner).
Then the system  is an orthonormal basis

for the functions .
Definition 1. A linear bounded operator T :

 is said to belong to the class (l 2) if the fol-
lowing conditions are satisfied for T:

1. Parseval’s identity holds for the system
 for any function ,

2. The operator T does not increase the supports of
the basis functions:  for .

The class  of linear operators  is
defined in a similar (and simpler) manner; namely, the
Haar basis is considered without participating the
index i and summation is taken only over J.

Condition 1 is stronger than the L2-boundedness of
the operator, but weaker than its unitarity in L2. In
turn, condition 2 coincides with the main condition of
the Gundy theorem for the Haar filtration (in which
the intervals are bisected sequentially from left to
right). Here, we refer to the version of the Gundy the-
orem for vector-valued martingales stated and proved
in [5, Theorem 1] (the original scalar version of the
theorem can be found in [6]). If the boundedness of
martingale transforms is treated as a discrete analogue
of the boundedness of the Hilbert transform, then the
Gundy theorem can be regarded as an analogue of the
boundedness of general Calderón–Zygmund opera-
tors, and the above-mentioned main condition from
it, as an analogue of the smoothness condition on the
kernel of an operator. The Gundy theorem implies
that operators from the classes  and  are uni-
formly Lp-bounded ( ). On the other hand,
the generality of conditions 1 and 2 is similar, to a large
degree, to the generality of the conditions of the
Gundy theorem.

Now we note that  and . Indeed,
the operators Hm are unitary and, by construction, satisfy
the scalar variant of condition 2. Concerning the operator
G, it is easy to see that the system  includes

an orthonormal basis in L2, while the other elements are
zero. Condition 2 for the operator G is also satisfied.

Our goal is to extend the Burkholder method to the
classes  and .
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3. RESULTS

Suppose that  and . By renormal-

izing the Haar functions, the classes  and  can be

extended to any interval . Let . The

Bellman function, which allows us to obtain an esti-
mate for operators from , is defined as

It is easy to see that the function B does not depend
on the choice of the interval I and that the domain 
consisting of points x for which the supremum is taken
over a nonempty subset satisfies the inclusion

Definition 2. A function  is said to belong
to the class  if B satisfies a boundary condition and a
concavity-type geometric condition that are as fol-
lows:

1. If , then .

2. Given  and , if

then

By applying the Bellman induction, it can be
proved that any such function is a majorant for B.

Theorem 1. If , then  for all
.

With the help of the Taylor formula, the concavity-
type condition from the definition of the class  can
be rewritten in the differential form

Here, we mean that the Hessian at an arbitrary
point from Ω is computed on the left and it acts as a
quadratic form on an arbitrary vector (dx1, dx2, dx3,

. Relying on the differential form of the basic con-
dition and using an argument similar to that used in
[7], we can find a particular representative of .
Namely, for , we set

Then, for each  it is possible to choose non-
negative constants t, δ, and Cp such that the function

, , is in . By using
this function, Theorem 1, and the homogeneity of the
function B, it is easy to obtain the following estimate
for operators :

where

This method can potentially be used to compute
the exact constants in Lp-estimates. For this purpose,
it is necessary to find the function B. We have estab-
lished that  and that the function B satisfies
properties 1 and 2 from the definition of the class .
Therefore, B should be sought as the pointwise mini-
mum of all functions from this class.

Now suppose that  and

. Define

where 1 is in the ith position. By fI, we mean the
sequence , and, by , the sequence

. The modulus of a vector from l2 is under-
stood as its l2-norm, and the product of such vectors is
understood as their scalar product. With these con-
ventions, all what was said above remains true up to an
Lp-estimate of an operator . It should be
emphasized that x1 and dx1 are now vectors from l2,
while the other variables remain scalars (including y1
in the definition of the function B0).
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