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Abstract—Linear systems of differential equations with an invariant in the form of a positive definite quadratic
form in a real Hilbert space are considered. It is assumed that the system has a simple spectrum and the eigen-
vectors form a complete orthonormal system. Under these assumptions, the linear system can be represented
in the form of the Schrödinger equation by introducing a suitable complex structure. As an example, we pres-
ent such a representation for the Maxwell equations without currents. In view of these observations, the
dynamics defined by some linear partial differential equations can be treated in terms of the basic principles
and methods of quantum mechanics.
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1. LINEAR SYSTEMS IN A HILBERT SPACE

Let V be a real separable Hilbert space with inner
product ; the case  is not excluded. Let A
be a linear operator with a dense domain ; A
is not assumed to be bounded. The operator A is asso-
ciated with the linear differential equation

(1)

Assume that this linear system has the quadratic
invariant

(2)

This means that the derivative of this function vanishes
by virtue of system (1), i.e.,  for all .
However, this means that the operator A is skew-sym-
metric:

for all . Specifically, all nonzero eigenval-
ues of A are purely imaginary.

Below, we describe the properties of eigenvectors of
A that are important in what follows (for details and
proofs, see [1]). Let
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be the nonzero eigenvalues of A; the numbers , ...
are assumed to be positive. Let

Here,  and . Then

(4)

Additionally, let πn be an invariant plane of A con-
taining the linearly independent vectors  and .
Define

these are points of πn. The restriction of the original
linear system (1) to πn has the form

(5)

This linear system describes the dynamics of a one-
dimensional harmonic oscillator with frequency .
Obviously, it has the first integral .

If there are no multiple eigenvalues in (3), then, for
, the two-dimensional planes πk and  are

orthogonal to each other. Specifically, the nonzero
vectors

(6)

form an orthogonal system.
Assume in what follows that
(i) the discrete spectrum of A is simple,
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(ii) the orthonormal system of vectors (6) is com-
plete.

It was shown in [1] that, under these assumptions,
linear system (1) is a completely integrable Hamilto-
nian system. The Hamiltonian property also holds
under weaker assumptions [2]. In the finite-dimen-
sional case, it is sufficient that the operator A be
nonsingular and there exist a first integral in the form
of a nondegenerate quadratic form [3]. Specifically,
the dimension of the phase space V is even. Our basic
observation is that, under assumptions (i) and (ii),
after introducing a suitable complex structure in V,
Eq. (1) can be represented in the form of the
Schrödinger equation.

Several remarks have to be made.
If the operator  is bounded, then an exis-

tence (and uniqueness) theorem on the entire time axis
 holds true for the linear differential equation (1)

(see, e.g., [4]). In this case, the operator A is skew-self-
adjoint: . In particular, the Lagrange adjoint lin-
ear system of differential equations

coincides with the original system (1). Therefore, lin-
ear system (1) can be called self-adjoint. For equations
of mathematical physics, the operator A is, as a rule,
unbounded, since it involves derivatives with respect
to space variables.

Our consideration can be somewhat generalized by
assuming that linear system (1) admits a first integral
in the form of a continuous positive definite quadratic
form

Then the self-adjoint operator B is invertible. In this
case, we can introduce a new inner product in V,
namely,

It is easy to show that the vector space V with inner
product  is also a real separable Hilbert space.
Accordingly, without loss of generality, B can be
assumed to be the identity operator.

2. REDUCTION TO THE SCHRÖDINGER 
EQUATION

Below, assumptions (i) and (ii) are supposed to
hold and the notation from Section 1 is used. In the
real vector space V, we introduce a complex structure.
For this purpose, V is represented in the form of a
direct sum . The subspace  ( ) is the closure
of the set of linear combinations of vectors 
( , ..., respectively). These subspaces are orthogo-
nal to each other, and the operator A interchanges 
and .
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A complex structure in V is defined by a linear
operator J acting on the vectors  and  ( ) by
analogy with the operator A:

Therefore, ,  and . More-
over, the operator J is skew-self-adjoint: . The
complex Hilbert space  consists of the sums

where  and  are vectors from V and .
Multiplication by i corresponds to the action of the
operator J. The space  is equipped with the natural
Hermitian product

The vectors

are linearly independent over  and form an ortho-
normal basis in . Indeed,

is equal to 0 if  and to 1 if k = l.

The vectors  form a complete system in

. Let

Then

(7)

Let  be orthogonal projectors in  onto
straight lines with unit vectors  Then equality
(7) can be rewritten as

Furthermore, according to (5),

(8)

Therefore, Eq. (8) takes the form of the Schrödinger
equation
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LINEAR SYSTEM OF DIFFERENTIAL EQUATIONS 41
where

(10)

is the Hamiltonian operator. Equality (10) is the spec-
tral decomposition of the Hermitian operator .

Equation (9) has the quadratic invariant

This is the original positive definite quadratic invari-
ant represented in complex form.

Remark 1. The Planck constant in Eq. (9) is equal
to 1. Of course, both sides of (9) can be multiplied by

. Then the Hamiltonian operator will be proportional
to . However, it is possible to do otherwise, namely,

to replace time t by .

These observations allow a somewhat different
view of the quantization problem. The simplest linear
Hamiltonian systems can be represented in a quantum
mechanical form. As a trivial example, we consider a
simple harmonic oscillator with frequency :

(11)

It has the positive definite quadratic integral  + q2

(doubled energy of the oscillator). Setting  + ip (as
before) we represent Eqs. (11) in the form of the one-
dimensional Schrödinger equation , where

 is the operator of multiplication by the real number
. We can immediately see an analogy with the clas-

sical Planck–Einstein formula  for the energy
of a photon of frequency ν. From a quantum mechan-
ical point of view, the invariant relation f = 1 is inter-
preted as the conservation of the “probability”  = 1.
In “old” quantum mechanics (prior to the Schrödinger
equation) this observation was expressed as follows: a
transition between two neighboring quantum states
corresponds to the classical basic oscillation (see the
discussion in [5]).

Similar conclusions about “self-quantization”
hold for linear evolution partial differential equations
admitting a positive quadratic invariant. In addition to
the Schrödinger equations, they include wave equa-
tions, the Liouville equation from statistical mechan-
ics, and the Maxwell equations. All of them were
examined in detail in [1] from the point of view of their
complete integrability as Hamiltonian equations.
Apparently, a reduction to the Schrödinger equation is
also possible under more general conditions (see Sec-
tion 4).

The self-quantization of the oscillation equations
for an elastic medium resembles de Broil’s classical
idea of the wave nature of quantum particles.
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3. OBSERVABLES AND CONSERVATION LAWS
After a linear system with a positive quadratic

invariant has been reduced to the Schrödinger equa-
tion, its dynamics can be considered in terms of quan-
tum mechanics. However, it is possible to proceed
directly without introducing a complex structure or
using a preliminary reduction to the Schrödinger
equation. A key point is to identify observables with
time evolution of interest. In turn, this task is closely
related to the definition of a measurement procedure,
which is substantially different in quantum and classi-
cal mechanics (mathematical and physical aspects of
the theory of measurements are discussed in [6, 7]).

By the states of linear system (1) (more precisely,
its pure states), we mean nonzero elements of real
Euclidean space V1 with the normalization condition

. The vectors x and  define the same state.
Observables are self-adjoint operators acting on V.
In this section, all operators (including A) are assumed
to be bounded (since we consider products of opera-
tors, their domains do not need to be kept track of
under this assumption).

From a classical point of view, in principle, all
observables (and system states) can be exactly mea-
sured simultaneously. In quantum mechanics, this is
not the case. A measurement of an observable F is
reduced to determining the eigenvalues (spectrum) of
the self-adjoint operator F; moreover, the measure-
ment results are considered nondeterministic. This
operator generates the quadratic form

which is interpreted in quantum mechanics as the
mean value of F at the state x.

Let J be a skew-self-adjoint anti-involute operator
from Section 2:

It defines the commutator of self-adjoint operators:

(12)

which, like F and G, is a self-adjoint operator. Com-
mutator (12) is associated with the Poisson bracket
defined on the space of continuous quadratic forms on
V: if  and  are two quadratic
forms, then their Poisson bracket is given by

Clearly, the bracket is linear in each argument,
, and the Jacobi identity holds true.

With the help of this Poisson bracket, it can be shown

1 For a more complete analogy with quantum mechanics, a pure

state should be defined as a pair of vectors  and

.
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that the original linear system with a quadratic invari-
ant is a Hamiltonian system [1].

By analogy with the well-known Weyl inequality in
quantum mechanics, we have

(13)

where

is the variance of the observable B at the state x (aver-
age deviation from its expectation). Inequality (13)
implies Heisenberg’s uncertainty relations: even at a
pure state, J-noncommuting observables cannot be
exactly measured simultaneously. Inequality (13) is
derived using the relations . In other
words, (13) holds for all observables H for which the Pois-
son bracket of the scalar square  with their mean
value (Hx, x) vanishes (in quantum mechanics, this
property holds automatically).

How do the observables vary with time? Since

and , we have (in the Heisenberg picture)

(14)

The operator

can be called a real evolution operator. This operator is
orthogonal:

It follows from (14) that

(15)

Therefore, the constancy of the observable is equiva-
lent to the fact that the operators A and  are com-
muting. Equation (1) provides a Schrodinger descrip-
tion of the dynamical system, while (15) is a Heisen-
berg description.

On the other hand,  is the condition for
the quadratic form f to be invariant with respect to the
phase f low of system (1). Indeed,  if and only if

Since the operator A is skew-self-adjoint, we obtain
what was required.

4. MAXWELL EQUATIONS
AS THE SCHRÖDINGER EQUATION

Reduction to the Schrödinger equation is possible
under more general conditions than (i) and (ii) from

[ ]σ σ ≥ , , ,2 2 24 ( ) ( ) ( )x x JF G F G x x

σ = , − ,2 2 2( ) ( ) ( )x B B x x Bx x
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Section 2. In some cases, this can be done using partial
differential equations of special form.

As an example, we consider the system of Maxwell
equations describing the evolution of an electric E and
a magnetic H field in Euclidean space  with-
out currents:

(16)

Here,  is the speed of light and the magnetic field is
solenoidal ( ). System (16) implies the Poynt-
ing equation

If the fields E and H quickly decay at infinity
(  as ), then the Poynting equation
yields a quadratic conservation law for Eqs. (16):

(17)

Setting , we use (16) to derive the
Schrödinger equation

(18)

Relation (17) can be represented in complex form:

A Hilbert space structure is specified using the Hermi-
tian inner product

which is defined on a vector space of square integrable
fields. The Hamiltonian operator (18) is Hermitian:

 = . For differentiable fields
(which are dense everywhere in L2), this equality fol-
lows straightforwardly from the well-known vector
analysis identity

Remark 2. The Hamiltonian property of Maxwell’s
equations has been studied by numerous authors,
starting with Dirac, with the purpose of quantization
of electrodynamics (see [1] and references therein).

The spectral properties of the curl operator were
discussed in the context of f luid dynamics, for exam-
ple, in [8, 9].
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