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Research on the integrability of autonomous
dynamical systems on a three-dimensional configura-
tion manifold M3 leads to the study of sixth-order sys-
tems on the tangent bundle TM3. A key point, along
with the geometry of M3, is the structure of the force
field present in the system. For example, the well-
known problem concerning the motion of a four-
dimensional pendulum on a generalized spherical
hinge in a nonconservative force field leads to a
dynamical system on the tangent bundle of the three-
dimensional sphere with a special metric on it induced
by an additional symmetry group [1, 2]. The dynami-
cal systems describing the motion of such a pendulum
have dissipation of variable sign (referred to as alter-
nating dissipation), and the complete list of first inte-
grals consists of transcendental functions that can be
expressed in terms of a finite combination of elemen-
tary functions [2, 3].

There are also problems concerning the motion of
a point on three-dimensional surfaces of revolution,
the Lobachevsky plane, etc. Sometimes, in systems
with dissipation, it is possible to find a complete list of
first integrals consisting of transcendental functions
(in the sense of complex analysis), since a complete list
of even continuous autonomous first integrals has to
be forgotten. The results obtained below are especially
important in the context of a nonconservative force
field present in the system.

In this work, we show the integrability of certain
classes of homogeneous dynamical systems on tangent
51
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bundles of smooth three-dimensional manifolds. The
force fields involved in the systems lead to dissipation
of different sign and generalize previously considered
fields [2, 3].

1. INTEGRATION OF EQUATIONS
OF GEODESICS

It is well known that, in the case of a three-dimen-
sional Riemannian manifold M3 with coordinates (α,
β), β = (β1, β2), and affine connection (α, β), the
equations of geodesic lines on the tangent bundle
TM3    , x =

, have the following form (the derivatives are
taken with respect to the natural parameter):

(1)

Let us study the structure of Eqs. (1) under a
change of coordinates on the tangent bundle TM3.
Consider a change of coordinates of the tangent space:

(2)

which can be inverted as  here, Rij and

Tji, i, j = 1, 2, 3, are functions of x, and RT = E, where

 and . Equations (2) will be referred
to as new kinematic relations, i.e., linear relations on
the tangent bundle TM3. We have
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(3)

where , j, i, k = 1, 2, 3; here, formulas (2)

are substituted for , i = 1, 2, 3, in (3), and the right-
hand sides of compound system (2), (3) are homoge-
neous forms of suitable degrees in the quasi-velocities
z1, z2, and z3.

Proposition 1. System (1) is equivalent to compound
system (2), (3) in the domain where det .

Thus, the result of passing from the geodesic equa-
tions (1) to equivalent system (2), (3) depends on both
substitution (2) (i.e., on the introduced kinematic
relations) and on the affine connection (α, β).

Consider a rather general case of kinematic rela-
tions specified as

(4)

where , , , and  are smooth func-
tions that do not vanish identically. Such coordinates
z1, z2, and z3 in the tangent space are introduced when
we consider geodesic equations [4, 5], for example,
with seven nonzero connection coefficients (in partic-
ular, on three-dimensional surfaces of revolution, in
the Lobachevsky space, etc.):

(5)

i.e., the other connection coefficients vanish. In the
case of (4), Eqs. (3) become

(6)

and geodesic equations (5) are equivalent to com-
pound system (4), (6) almost everywhere on the man-
ifold TM3 .

To integrate system (4), (6) completely, we need to
know, generally speaking, five independent first inte-
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grals. Moreover, first integrals (specifically, for equa-
tions of geodesics) can be sought in a more general
form than that considered below.

Proposition 2. If the system of differential equalities

(7)

holds everywhere, then system (4), (6) has an analytic
first integral of the form

(8)
Example. In the three-dimensional Lobachevsky

space in the Klein model with coordinates (x = β1,
, the geodesic equations (5) become

(9)

A four-parameter system that is equivalent for
 to Eqs. (9) and has a first integral of

form (8) is given by

if the first, fifth, and sixth equations of this system are
treated as new kinematic relations.

The system of equalities (7) can be treated as the
possibility of transforming the quadratic form of the
metric into a canonical form with energy conservation
law (8) (or see (18) below) depending on the problem
under consideration. The history and the state of the
art in this more general problem have been covered
rather extensively (we note only [5, 6]).

The search for both integral (8) and (13), (15) (see
below) relies on additional symmetry groups present
in the system [5, 6].
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It is possible to prove a separate theorem on the
existence of a solution , , , and g(β1) of
system (7) for system (4), (6) to have analytical integral
(8). However, some of the equalities (7) are not
required in what follows in the study of dynamical sys-
tems with dissipation. Nevertheless, we assume here-
inafter that the condition

(10)

holds for Eqs. (4), where the function g(β1) satisfies
the transformed third equality in (7):

(11)

Thus, the function g(β1) depends on the connec-
tion coefficients, while constraints on the functions
f(α) and  will be given below.

Proposition 3. If properties (10) and (11) hold and,
additionally,

(12)

then system (4), (6) has a smooth first integral of the form

(13)

Proposition 4. If the property

(14)

holds and the second equality in (12) is satisfied (i.e.,
), then system (4), (6) has a smooth

first integral of the form

(15)

Proposition 5. If conditions (10)–(12), (14) are sat-
isfied, then system (4), (6) has a first integral of the form

(16)

where, after the integral in (16) has been evaluated, the
constants C2 and C3 can be replaced by the left-hand
sides of (13) and (15), respectively.

Theorem 1. If conditions (10)–(12) and (14) are sat-
isfied, then system (4), (6) has a complete set of four first
integrals of the form (8), (13), (15), and (16).

The fact that the complete set consists of four,
rather than five first integrals will be shown below.
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2. INTEGRATION OF EQUATIONS OF 
MOTION IN A POTENTIAL FORCE FIELD

Modifying system (4), (6) yields a conservative sys-
tem. Namely, we introduce a smooth force field in the
projections onto the  axes, respectively, k = 1, 2, 3:

, , and . The consid-
ered system on the tangent bundle TM3 ; α, β1,
β2} becomes

(17)

and it is almost everywhere equivalent to the system

Proposition 6. If equalities (7) are everywhere valid,
then system (17) has a smooth first integral of the form

(18)

•
kz

β α1 2 2( ) ( )F f β α2 1 1( ) ( )F f α α3 3( ) ( )F f
3 2 1{ , ,z z z

•

•

α = α
= α α

3 3

3 3 3

( ),

( ) ( )

z f

z F f

α
αα

α α

α − α Γ α β + α 

α α− Γ α β − β Γ α β
α α

23
3 3

2 2
2 2 21 2

11 2 1 22 1
3 3

ln ( )
( ) ( , )

( ) ( )( , ) ( ) ( , ) ,
( ) ( )

d f
f z

d
f fz g z
f f

•

α

= β α
α − α Γ α β + α 

α− β Γ α β
α

2 2 1 1

1 1
3 1 2 3

2
2 1 22

1 22 1
1

( ) ( )
ln ( )

( ) 2 ( , )

( ) ( ) ( , ) ,
( )

z F f
d f

f z z
d

f g z
f

•

α

= β α β
α − α Γ α β + α 

1 1 2 2 1

2 2
3 2 1 3

( ) ( ) ( )
ln ( )

( ) 2 ( , )

z F f g
d f

f z z
d

• •

β − α Γ α β + β 

β = α β = α β

2 1
1 12 1 2

1

1 2 1 2 1 2 1

ln ( )
( ) 2 ( , ) ,

( ), ( ) ( ),

d g
f z z

d
z f z f g

•• α •
αα

α • α •

α − α α + Γ α β α
+ Γ α β β + Γ α β β =

2 2
3 3

2 2
11 1 22 2

( ) ( ) ( , )

( , ) ( , ) 0,

F f

•• • •
α

•

β − β α + Γ α β α β
+ Γ α β β =

2 1
1 2 1 1 1 1

1 2
22 2

( ) ( ) 2 ( , )

( , ) 0,

F f

•• • •
α

• •

β − β α β + Γ α β α β
+ Γ α β β β =

2 2 2
2 1 2 2 1 2 2

2
12 1 2

( ) ( ) ( ) 2 ( , )

2 ( , ) 0.

F f g

Φ α β1 3 2 1( , , ; , )z z z

= + + + α β = =
α β = α + β + β

2 2 2
1 2 3 1

3 2 1 1 2

( , ) const,
( , ) ( ) ( ) ( )

z z z V C
V V V V

α β β

α β β

= − − −  
1 2

0 10 20

3 2 12 ( ) 2 ( ) 2 ( ) .F a da F b db F b db
DOKLADY MATHEMATICS  Vol. 102  No. 3  2020



NEW CASES OF HOMOGENEOUS INTEGRABLE SYSTEMS 521
Proposition 7. Suppose that . If
the conditions of Propositions 3 and 4 are satisfied, then
system (17) has two smooth first integrals of the form
(13), (15).

Proposition 8. If the conditions of Proposition 5 are
satisfied, then system (17) has a first integral of the
form (16).

Theorem 2. Suppose that . If con-
ditions (10)–(12) and (14) are satisfied, then system (17)
has a complete set of four first integrals of the form (18),
(13), (15), (16).

The fact that the complete set consists of four,
rather than five, first integrals, will be shown below.

3. INTEGRATION OF EQUATIONS OF 
MOTION IN A FORCE FIELD WITH 

DISSIPATION

Slightly modifying system (17) with conditions
(10)–(12), (14), and , we obtain a
system with dissipation. Namely, dissipation (gener-
ally, alternating) is characterized not only by the coef-
ficient , b > 0, in the first equation of system (19)
(in contrast to (17)), but also by the following depen-
dence of the (external) force field in the projections
onto the  axes (k = 1, 2, 3), respectively: ,

, and . The considered
system on the tangent bundle TM3
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Now we integrate the sixth-order system (19) with
conditions (11) and

Assume also (by analogy with (11)) that the func-
tion f(α) satisfies the transformed equality in (7):

In this case, a fifth-order independent subsystem
decouples, namely,

To integrate the system completely, we need to
know, generally speaking, five independent first inte-
grals. However, after making the change of variables

  , system (19)
splits into
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(21)

(22)
It can be seen that, for the complete integrability of

system (20)–(22), it suffices to indicate two indepen-
dent first integrals of system (20), one first integral of
independent system (21) (after changing the indepen-
dent variable), and an additional first integral for
“coupling” Eq. (22) (altogether four first integrals).

Assume also that, for some  R, it is true that

(23)

and, for some  R,

(24)

Here, , i.e., . Con-
dition (23) will be referred to as geometric, and condi-
tions of group (24), as energy ones.

Condition (23) is called geometric, because,

among other things, it imposes a constraint on 
such that the corresponding coefficients of the system
are reduced to a homogeneous form with respect to
the function Δ(α). Conditions of group (24) are called
energy ones, because, among other things, the forces
become, in a sense, “potential” with respect to the

functions  and Δ(α), so that the correspond-
ing coefficients of the system are reduced to a homo-
geneous form (again with respect to Δ(α)). Moreover,
it is the function Δ(α) that introduces dissipation of
variable sign into the system.

Theorem 3. Suppose that conditions (23) and (24) are
satisfied. Then system (20)–(22) has four independent,
generally speaking, transcendental [7, 8] first integrals.

In the general case, the first integrals have a cum-
bersome form (since the Abel equation has to be inte-
grated [9]). Specifically, if , then an explicit
expression for the key first integral is given by
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An additional first integral of system (20) has the
following structural form:
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finite combinations of elementary functions depend
not only on computed quadratures, but also on the
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The following result holds, which is, in a sense,
converse to Theorem 3.
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becomes a dynamical system having variable dissipa-
tion with zero mean [2, 10]. For b = –λ1, it turns into
a conservative system with two smooth first integrals:

(29)

(30)

Obviously, the ratio of two first integrals (29) and
(30) is also a first integral of system (20)–(22) for b =
–λ1. However, for b ≠ –λ1, each of the functions

(31)

and (30) taken separately is not a first integral of sys-
tem (20)–(22). Nevertheless, the ratio of functions
(31) and (30) is a first integral of system (20)–(22) (for

) for any b.

In general, for systems of any order with dissipa-
tion, transcendence of functions (in the sense of the
presence of essential singularities) as first integrals is
inherited from the existence of attracting or repelling
limit sets in the system [11, 12].

5. SYSTEMS ON THE BUNDLE OF THREE-
DIMENSIONAL SPHERE AND APPLICATIONS

In the above presentation, we identified, as an
example, two classes of manifolds (surfaces of revolu-
tion and Lobachevsky spaces) for which the proposed
technique of integration of systems with dissipation is
applicable. Now we will note one-parameter family of
functions f(α) and f3(α) defining a metric on the
three-dimensional sphere:

Moreover, we distinguish between two important sub-
cases:

(32)

(33)

Case (32) forms a class of systems corresponding to
a dynamically symmetric four-dimensional rigid body
moving at zero levels of cyclic integrals in a generally
nonconservative force field in the case when the field
depends additionally on (a second-rank tensor of)
angular velocity [2, 10]. Case (33) forms a class of sys-
tems corresponding to the motion of a point on a
three-dimensional sphere with a natural metric
induced by the metric of the ambient four-dimen-

sional Euclidean space. In particular, for
, the considered system describes a

geodesic f low on a three-dimensional sphere. In the

case of (32), if , then the system describes

the motion of a four-dimensional rigid body in the
force field F3(α) under the action of a follower force
[2, 3]. Specifically, if  and  =
sinα, then the system describes a generalized spherical
pendulum placed in a material f low in four-dimen-
sional space and has a complete set of transcendental
first integrals that can be expressed in terms of a finite
combination of elementary functions [2, 3, 10, 11].

If the function δ(α) is not periodic, then the con-
sidered dissipative system has variable dissipation with
a nonzero mean (i.e., it is actually dissipative). Never-
theless, due to Theorems 3 and 4, closed-form expres-
sions for transcendental first integrals in terms of a
finite combination of elementary functions can also be
obtained in this case. This result also determines new
nontrivial cases of integrability (in explicit form) of
dynamical systems with dissipation on the tangent
bundle of a smooth three-dimensional manifold.
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Translated by I. Ruzanova

− α
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