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Abstract—The problem of optimal trajectory planning for a moving object with a nonuniform radiation pat-
tern is considered and analytically solved as a variational problem. The object tries to evade detection by a
search system consisting of a single sensor. Necessary and sufficient conditions for trajectory optimality are
obtained. Analytical expressions for optimal trajectories, the velocity law, and the integral risk of detection on
optimal trajectories are derived.
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A large class of search and detection tasks for mov-
ing objects is reduced to the optimization of their tra-
jectories and velocity laws with an integral optimality
criterion specified in terms of the detection risk related
to the detection probability, as was proposed in [1–3].
The corresponding mathematical formulations are
expressed in terms of variational or optimal control
problems, and the solution of these optimization
problems relies on the integration of the Euler–
Lagrange or adjoint equations, taking into account the
maximum condition for the Pontryagin function, as in
[4, 5]. Most studies are devoted to the development of
numerical algorithms for constructing optimal trajec-
tories of motion. An overview of such algorithms can
be found in [6]. and only an insignificant portion of
works, Due to the nonlinearity of problem formula-
tions, an analytical derivation, determination, and
classification of solutions are addressed in only a small
number of works, for example, in [1, 4, 7]. This paper
continues [7] and, more specifically, generalizes the
formulation considered in [7]. We study the problem
of finding optimal trajectories of an object with a non-
uniform radiation pattern that moves in the presence
of a sensor (detector). A generalized formulation is
proposed that covers different types of physical fields
used for object detection. As a result, this approach
can be used to solve a broad class of search–evasion
problems.
34

a Trapeznikov Institute of Control Sciences, 
Russian Academy of Sciences, Moscow, 117997 Russia
*e-mail: galaev@ipu.ru
**e-mail: pashlys@yandex.ru
***e-mail: vic_iakhno@mail.ru
1. FORMULATION OF THE PROBLEM

An object moves in the field produced by a search
system, which, in the simplest case, represents a single
sensor located at the origin. The task is to find optimal
trajectories of the object by solving a classical varia-
tional problem with an integral risk functional
depending on the level of the signal S(t) emitted by the
object.

This level of the signal depends on a number of
constant characteristics of the moving object and the
sensor and on the instantaneous velocity of the object
and the distance to the sensor

(1)

where  is responsible for the radiation pattern of
the sensor’s receiving antenna, g(β) is the radiation
pattern of the moving object, r is the current distance
between the sensor and the object,  is the instanta-
neous velocity of the object, and  is the attenu-
ation coefficient of the medium. The geometric mean-
ing of the angles ψ and ϕ is explained in Fig. 1a.
Namely, ψ is the angle of rotation of the object’s
velocity, and ϕ is the angle of rotation of the object’s
radius vector. The angle  is an angle in the
rectangular triangle constructed using the radial 
and transversal  projections of the object’s velocity,
i.e., the angle between the object’s velocity and its pro-
jection onto the radius vector, as shown in Fig. 1b. The
quantity μ > 1 characterizes the physical field used for
detection. The field can be magnetic, thermal, acous-
tic, or electromagnetic.
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Fig. 1. Position of the object on the plane of Cartesian
coordinates with the sensor S.
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x Fig. 2. Example of the radiation pattern of the moving
object.
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The optimization criterion for the problem is the
risk R regarded as an integral functional of the signal S
in (1). It has the form

(2)

Assume that the radiation pattern of the receiving
antenna is uniform  and the signal is not
damped by the medium, i.e., .

An example of the radiation pattern g(β) is given in
Fig. 2.

Thus, the problem of finding optimal trajectories
can be formulated as follows.

Problem 1. Find a trajectory  minimiz-
ing the functional

(3)

where  is the velocity of the object and r is the dis-
tance between the sensor and the object. The bound-
ary conditions are fixed:

The travel time T from the point A to the point B is
also fixed.

2. NECESSARY OPTIMALITY CONDITIONS
Lemma 1. The substitution of the variable 

brings functional (3) to the form

(4)

Lemma 1 implies that Problem 1 is equivalent to
the two-point boundary variational problem of mini-
mizing functional (4).

Problem 2. Find a trajectory  mini-
mizing the functional
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(5)

with boundary conditions

Due to the form of functional (5), it has several first
integrals.

Lemma 2. The Lagrangian  has a con-
stant value S* on an extremal trajectory .

The following theorem provides a necessary condi-
tion for the optimality of a trajectory solving Problem 2.

Theorem 1. Suppose that  is a twice differentia-
ble function of β such that  for all

, where  and  are constants. Assume that
there exist  and  that are continuous functions of t.
Then an extremal trajectory of Problem 2 satisfies the
system of equations

(6)

Corollary 1. Theorem 1 implies that the extremal tra-
jectory has the form of a logarithmic spiral:

(7)

The equation of the extremal trajectory on the
polar plane has the form

(8)

The following two lemmas determine the velocity
law for the object and the risk of its detection while
moving along the extremal trajectory.
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Lemma 3. The velocity of the object moving along the
extremal trajectory (8) obeys the law

(9)

Lemma 4. The value of the functional (4) on the
extremal trajectory (8) is given by

(10)

where , and depends only on the

boundary conditions.

3. SUFFICIENT CONDITIONS
OF OPTIMALITY

Now, we find the conditions under which the
resulting extremal trajectory is an optimal solution of
Problem 2, i.e., a strong minimizer of functional (4).
For this purpose, we consider the Hessian matrix.

Lemma 5. Let ,
where g(β) is a three times continuously differentiable
function of β. Then the Hessian matrix of the function H
has the form

(11)

where

and the Hessian is given by

(12)
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The following theorem provides a sufficient condi-
tion for the optimality of a trajectory that is a candi-
date for the solution of the problem.

Theorem 2. Assume that the conditions of Theorem 1
and Lemmas 2 and 5 are satisfied and detH > 0 for all β.
Then an extremal trajectory satisfying (6) is a strong
minimizer of functional (4).

Thus, the fact that the determinant of the Hessian
matrix is positive guarantees the optimality of the log-
arithmic spiral as a solution of the problem. For an
arbitrary radiation pattern g(β). Theorem 2 gives a
definite answer to the question about the optimality of
trajectory (8) as a solution of the problem. Indeed, the
sign of the Hessian depends on the sign of the third
factor in (12), which, for given μ, depends only on the
form of g(β). If the sufficient conditions are not satis-
fied, the desired optimal trajectory has a more compli-
cated form and consists of several logarithmic spirals.

As a more general case, we can consider the motion
of an object from one manifold to another. The deri-
vation of the form of trajectories remains valid in this
case.

4. EXAMPLE
Consider an example for the special case ,

which may correspond to a primary acoustic signal
propagating in a homogeneous water medium. Suppose
that the radiation pattern of the object has the form

The coefficients K1 and K2 determine the character
of the radiation; they are strictly positive and normal-
ized, i.e., . Figure 2 shows a radiation pat-
tern of this form for  and . The
Hessian is computed using Lemma 5:

Obviously, the Hessian is strictly positive. Then, by
Theorem 2, the logarithmic spiral (8) is the optimal
minimum-risk trajectory in the motion between two
points on the plane. This statement can be checked by
varying functional (4):

where δρ and δϕ are the variations of the coordinates,
which are sufficiently smooth functions of time. The
first and the second terms vanish due to the fixed
boundary conditions for the variations, while the third
term vanishes, because, on the extremal trajectory, the
Euler–Lagrange equations hold, which imply (6). The
only thing left is the weighted sum of squares, which is
obviously positive. Thus, any variation of the trajec-
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tory (logarithmic spiral) increases the value of the risk
functional, which proves its optimality. By Lemma 4,
the risk value on this trajectory is given by

and depends only on the boundary conditions.

FUNDING
This work was supported in part by the Presidium of the

Russian Academy of Sciences.

REFERENCES
1. M. Zabarankin, S. Uryasev, and P. Pardalos, “Optimal

risk path algorithms,” in Cooperative Control and Opti-

mization, Ed. by R. Murphey and P. Pardalos (Kluwer
Academic, Dordrecht, 2002), Vol. 66, pp. 273–298.

2. A. A. Galyaev, Autom. Remote Control 71 (4), 634–
639 (2010).

3. L. P. Sysoev, Probl. Upr., No. 6, 64–70 (2010).
4. A. A. Galyaev and E. P. Maslov, Autom. Remote Con-

trol 73 (6), 992–1004 (2012).
5. H. Sidhu, G. Mercer, and M. Sexton, J. Battlefield

Technol. 9 (3), 33–39 (2006).
6. M. Panda, B. Das, B. Subudhi, et al., Int. J. Autom.

Comput. (2020). 
https://doi.org/10.1007/s11633-019-1204-9

7. A. A. Galyaev, A. V. Dobrovidov, P. V. Lysenko,
M. E. Shaikin, and V. P. Yakhno, Sensors 20, 2076
(2020).

Translated by I. Ruzanova

( ) = + ϕ − ϕ 
 

22 2
1

1* ln B
B A

A

rR K
T r
DOKLADY MATHEMATICS  Vol. 102  No. 1  2020


	1. FORMULATION OF THE PROBLEM
	2. NECESSARY OPTIMALITY CONDITIONS
	3. SUFFICIENT CONDITIONS OF OPTIMALITY
	4. EXAMPLE
	REFERENCES

		2020-10-02T19:47:16+0300
	Preflight Ticket Signature




