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Abstract—For problems related to radiative heat conduction, an algorithm is proposed that is well adapted to
the architecture of systems with extramassive parallelism. According to the underlying method, a term with a
small parameter multiplying the second time derivative is included in the model describing the process.
Examples of numerical results obtained using this model on detailed spatial meshes are given, and their com-
parison with results based on the classical radiative heat conduction model are presented.

Keywords: radiative heat conduction, hyperbolic model of heat conduction, explicit difference scheme
DOI: 10.1134/S1064562420020088
1. HYPERBOLIC MODEL FOR DESCRIBING 
RADIATIVE HEAT CONDUCTION

Radiative heat conduction describes heat transfer
with the help of radiation in optically thick media [1, 2].
This model is used to describe phenomena in astro-
physics [3], in some engineering problems related to
dense laser plasmas [4], and in processes associated
with thermonuclear fusion [5].

According to this model, the divergence of the heat
flux  caused by radiation is described in the form

(1)

where T is the temperature, σ is the Stefan–Boltz-
mann constant, and l(T, ρ) is the Rosseland mean free
path. In turn, l is defined as

(2)

where ν is the photon frequency, lν(ν, T, ρ) is the free
path of a photon of frequency ν, and Uvp is the spectral
radiation intensity of an absolutely black body given by

(3)
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here, h is Planck’s constant and k is the Boltzmann
constant.

Finally, assuming that the heat capacity is a con-
stant and neglecting the motion of the medium, the
evolution of temperature is described by the parabolic
equation of radiative heat conduction

(4)

where Q is a given source of heat and Cv is the heat
capacity.

This equation can be solved using explicit or
implicit difference schemes. Implicit schemes are
absolutely stable, but become inefficient under paral-
lelization with a large number of solvers (processors,
cores). This problem is especially challenging for
promising computer systems using graphics processing
units as accelerators.

Explicit schemes do not lose efficiency when
numerous processors are used in parallel, but impose
a severe restriction on the admissible time step [6],
namely,

(5)

where

(6)

It is hardly possible to use explicit schemes on fine
spatial meshes, for which, in fact, systems with extra-
massive parallelism are required. The situation is
aggravated by the fact that the coefficient  grows
strongly with increasing temperature, which is typical
for high-temperature gasdynamic processes. As can be
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Fig. 1. Numerical results for the test problem of a cooling
ball.
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seen from (5), this imposes further restrictions on the
admissible time step size Δt.

A way out of this seemingly deadlock situation
relies on the hyperbolic heat conduction model:

(7)

which has previously been used to describe rapid pro-
cesses [7].

Relying on physical considerations, we can see that
the solutions of Eqs. (4) and (7) will differ little if

(8)

i.e.,

(9)

where tproc is the characteristic time of the process.
Let us discuss the properties of the solution to

Eq. (7) in more detail. The idea of reducing parabolic
equations to a hyperbolic one was underlain by the
analogy with the quasi-gasdynamic system, which is a
hyperbolic system that differs from the Navier–Stokes
equations in the small second-order terms in the
Knudsen number (O(Kn2)) [8].

This model admits the use of algorithms that are
well adaptable to the architecture of high-performance
computing systems. In [9, 10] the solution to the linear
analogue of Eq. (7) was theoretically analyzed and
compared with the solution to the linear analogue of
Eq. (4). The formulation of conservation laws for a
hyperbolic equation of type (7) was discussed in [11].
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2. EXPLICIT SCHEMES FOR SOLVING
THE HYPERBOLIC HEAT CONDUCTION 

EQUATION
In this work, Eq. (7) was solved numerically using

explicit schemes. Below, we discuss the choice of a
small parameter ε for this equation and compare its
solution with that of its parabolic counterpart (4) for
various values of the radiative thermal conductivity .

As a small parameter ε, we use a quantity propor-
tional to the ratio of the spatial mesh size h to the char-
acteristic speed V of the process:

(10)

This choice of ε ensures the necessary accuracy of
the solution of Eq. (7) and its proximity to the solution
of parabolic equation (4). On the other hand, this
choice of ε makes it possible to compute Eq. (7) by
applying an explicit scheme with an acceptable (as
shown by theoretical estimates [12]) time step size Δt
such that

(11)
The Δt-constraint (11) is more acceptable than

condition (5). The advantages of (11) are especially
pronounced on fine spatial meshes, providing the
opportunity of using explicit schemes in massive par-
allel computations. However, it should be noted that
some of the numerical experiments presented in this
work were characterized by a milder Courant-type sta-
bility condition, namely,

(12)
The hyperbolic equation (7) was solved using a

three-level difference scheme relating the solutions at
the time levels j – 1, j, and j + 1. For a constant Δt, the
time derivatives were approximated as

(13)

The spatial derivatives were approximated at the
central time level t = t j.

The temperature values Tj+1 at the level j + 1 were
determined using known temperature values Tj and
Tj+1. The coefficient  was determined from the known
temperature value Tj. It should be noted that the
strong nonlinear dependence of  on temperature
imposes additional constraints on Δt, but they are
determined by the accuracy of the numerical solution,
rather than by stability.

3. NUMERICAL EXAMPLES
The main goal of the conducted numerical experi-

ment was to experimentally analyze the stability of the
explicit three-level scheme for solving the hyperbolic
heat equation (7), and to compare its solutions with
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Fig. 2. Stability of explicit schemes: (a) 1D computations and (b) 3D computations.
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those of the parabolic equation (4). The basic compu-
tations were performed for the one-dimensional (1D)
formulation, which provides more opportunities for
mesh refinement. Computations were also performed
in the two- and three-dimensional (2D and 3D) for-
mulations. The computations were conducted with
various values of the nonlinear radiative thermal con-
ductivity.

The test problem

was considered in the computational domain

with initial conditions

α = 3; k0 = 1; and the computation time tmax = 1.
Figure 1 shows the numerical solutions produced

by (1) a two-level implicit scheme for parabolic equa-
tion (4) and (2) the three-level scheme for hyperbolic
model (7) at ε = 5 × 10–3 in 3D-computations per-
formed on a regular grid consisting of 100 cells in one
coordinate (h = 4.5 × 10–2) with the identical time step
Δt = 4.5 × 10–4. The resulting solutions differ within
1% in the С norm. Under mesh refinement, this dif-
ference is further reduced. The results of 1D-compu-
tations on a regular grid consisting of 1000 cells in
coordinate (h = 4.5 × 10–3, Δt = 10–4) differ at most in
the fifth decimal.
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Figure 2 presents the maximum admissible time
step Δt as a function of the spatial mesh size h. For the
three-level scheme (7), we have , where a1
is a constant depending on the parameter ε. Similar
computations were performed for α = 4.5. In this case,
the constant a1 was approximately half as large
(dashed curve in the plot). The lower curve in Fig. 2a
corresponds to the explicit two-level scheme as
applied to the parabolic equation (4). In this case, the
stability condition has the form . The
numerical results produced in the 3D case are dis-
played in Fig. 2b. Similar results were obtained on tet-
rahedral meshes.

Since explicit schemes are well adaptable to the
architecture of multiprocessor systems, issues associ-
ated with parallel implementation were not addressed in
this study. The approximation of the term 
on various unstructured meshes was not considered
either. In the future, we intend to use previously devel-
oped techniques for spatial approximation.

CONCLUSIONS
The hyperbolic heat conduction model (7) with a

small parameter ε multiplying the highest time deriva-
tive yields results that are similar to those based on the
classical parabolic model (4). It seems that an optimal
choice of ε is given by (10). As a result, on the one
hand, the closeness of the solutions of the parabolic
and hyperbolic models is ensured and, on the other
hand, the computational costs are reduced noticeably
in the case of explicit schemes.

With the use of explicit schemes, the hyperbolic
model exhibits noticeable advantages. As compared
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with parabolic model (4), they are especially pro-
nounced on fine spatial meshes, whose application
became possible with the creation of ultrahigh-perfor-
mance computing systems.
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