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Kinetic Algorithms for Modeling Conductive Fluids Flow
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Abstract—Processes in the dynamics of electrically conducting f luid f lows in complex heat transfer systems
are mathematically modeled in detail on high-performance parallel computing systems. The study is based
on the kinetically consistent magnetogasdynamic approach adjusted to this class of problems. The kinetically
consistent algorithm is well adapted to the architecture of high-performance computing systems with massive
parallelism, so that complex heat transfer systems can be effectively studied with a high resolution. The
approach, method, and algorithms are described, and numerical results are presented.
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INTRODUCTION

In [1], a complex local Maxwellian statistical dis-
tribution function and the kinetically consistent
approach were used to design a numerical algorithm
that effectively uses the capabilities of high-perfor-
mance computing systems as applied to fundamental
and real-world problems. Numerical results obtained
for the fundamental astrophysical problem of accret-
ing interstellar matter onto a massive compact astro-
physical object were presented in [2]. The three-
dimensional system under study consisted of nine
equations, including one for the magnetic field and
one for the gravitational potential. The magnetic field
was described by a three-dimensional equation with
magnetic viscosity. Based on this approach, large-
scale fundamental problems were effectively solved on
spatial grids of more than 1010 cells and time intervals
of more than 104 time steps with the use of high-per-
formance parallel computing systems.

Many important applications require that models
be described in detail by the magnetohydrodynamics
equations for incompressible electrically conducting
fluids. The interaction of an electrically conducting
57
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f luid with electric and magnetic fields makes it possi-
ble to implement various phenomena in electromag-
netic f luid-mechanical energy converters. An advan-
tage of such systems in practical applications under
critical conditions is that energy carriers are trans-
ferred without using moving mechanical elements. An
example is magnetohydrodynamic motors in complex
heat transfer systems [3].

The goal of this paper is to adapt an algorithm
developed earlier for magnetogasdynamics to the sim-
ulation of electrically conducting f luid f lows and to
apply it to the study of complex distributed heat trans-
fer systems with electromagnetic motors.

As a rule, algorithms used to simulate incompress-
ible f lows differ substantially from those intended for
simulating the dynamics of viscous compressible heat-
conducting gases. In this work, relying on the well-
known fact that gases at Mach numbers lower than
0.15 are nearly incompressible, an earlier proposed
algorithm is adapted with minimal modifications to
the simulation of electrically conducting f luid f lows in
complex heat transfer systems on high-performance
parallel computing systems.

KINETICALLY CONSISTENT APPROACH
TO SIMULATION OF INCOMPRESSIBLE 

ELECTRICALLY CONDUCTING
FLUID FLOWS

The use of the kinetically consistent system of dif-
ferential equations of magnetogasdynamics for the
simulation of electrically conducting f luids is based on
the following physical assumptions. The mathematical
model and the numerical algorithm to be used have to
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take into account the features of f luid behavior, in par-
ticular, incompressibility.

The speed of sound in liquids is much higher than
the speed of sound in gases. Since the characteristic
velocities u in most engineering applications do not
exceed tens of meters per second, we can assume that

(1)
where c is the speed of sound.

Additional stronger incompressibility conditions
can be specified by the phenomenological equation of
state

(2)
where the parameter β reflects larger variations in
pressure under minor variations in density, i.e., it
specifies a nearly incompressible medium. Large val-
ues of β can be used with a sufficient degree of approx-
imation without affecting the simulation results.

In the case of f lows characterized by small Mach
numbers, a serious difficulty is the requirement that
the time step be sufficiently small. In the case of
implicit schemes, this requirement is needed for
achieving the required accuracy; as a result, the con-
vergence of the solution substantially slows down. In
this context, explicit schemes are preferable for paral-
lel computations; moreover, in the case of using
hyperbolic systems of magnetohydrodynamic equa-
tions, the requirements for stability and, accordingly,
for the time step can be reduced significantly [4].

The conducted study was based on a kinetically
consistent system of magnetogasdynamics equations
of hyperbolic type (for more details, see [5]), which
represents a physical model of magnetogasdynamic
processes derived from the fundamental kinetic equa-
tion [6, 7].

A compact kinetically consistent system of differ-
ential equations of magnetogasdynamics was used for
numerical computations of the problem under consid-
eration [8]. Brought to hyperbolic form, the three-
dimensional system of equations is given by:
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where  is the density, u is the velocity, p is the pres-
sure,

is a regularizer associated with smoothing the solution
over a time interval, τ is the characteristic time
between molecular collisions: , τm =

 is a magnetohydrodynamic time con-

stant,  is the magnetic viscosity, q is the Joule heat-
ing, and B is the magnetic field.

System (3)–(7) with additional conditions (2) was
solved numerically using the three-level explicit
scheme described in [4]. This scheme is perfectly
adaptable to the architecture of computing systems
with extramassive parallelism and is a promising
direction for ultrahigh-performance parallel comput-
ing systems. The asymptotic stability of the considered
system is determined by the condition .

NUMERICAL EXPERIMENTS

The flow of an electrically conducting f luid was
computed in a plane channel of a magnetic dynamic
motor having an expansion in the form of a three-
dimensional rectangular heat transfer system. The
geometry of the problem is shown in Fig. 1. The rect-
angular channel 30 cm long with a cross section of
2.5 × 2.5 cm is connected to a rectangular volume of
2.5 × 30 × 30 cm in size, which is connected to a rect-
angular channel with a cross section of 2.5 × 2.5 cm.
The initial segment of the inlet channel (10 cm long)
represents the electromagnetic motor. An electrically
conducting sodium fluid (Na) moves in the channel of
the magnetic motor under the influence of an external
magnetic field applied to the shaded domain. The
physical characteristics of the melt are taken from [9]:
the temperature is 600 K, the density is 874 kg/m3, and
the adiabatic index is 1.2. The viscosity is defined as a
function of temperature by the empirical formula

(8)

the thermal conductivity is defined as a function of
temperature by the empirical formula

(9)

and the electric conductivity is defined as a function of
temperature by the empirical formula
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Fig. 2. Computation of the f low of the electrically conducting f luid (Na) in the magnetic dynamic motor: (a) magnetic field
strength distribution, (b) f low velocity distribution, and (c) density distribution.
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Fig. 1. 2D projection of the geometry of the numerical experiment.
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Three-dimensional numerical experiments were
performed on a grid consisting of 200 × 2000 × 2000
cells, so that the f low in the complicated geometric
system was simulated in detail.
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As initial conditions, the parameters of the magne-
tohydrodynamic motor were specified so that the
velocity of the electrically conducting f luid (Na) in the
electromagnetic motor was 360 m/s (M = 0.15).
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Fig. 3. 2D projection of the f low of the electrically conducting f luid (Na) in the cavity at t = (a) 0.02 and (b) 0.3 s; steady state.
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Figure 2 shows the basic magnetohydrodynamic

parameters on the inlet segment for steady laminar

flow: (a) the magnetic field strength, (b) the velocity in

the middle of the channel (reaches 270 m/s), and

(c) the density in the inlet channel; the variation in the

density is at most 0.2%.

Figure 3 presents 2D-projections of the f low of the

electrically conducting f luid (Na) in the system: the

inlet channel with the magnetic dynamic motor, the

cavity, and the outlet channel. The dynamics of the

flow in the system is characterized by several basic

stages. Figure 3a shows the transitional f low regime at

the time t = 0.02 s; we can see a stable central vortex

shifted toward the forward wall of the cavity, which is

caused by the reaction of the f low directed from the

back wall of the cavity. Figure 3b presents the steady

flow regime at t = 0.3 s. The f low dynamics is stabi-

lized with the formation of a constant central vortex in

the cavity. Its expected parameters are comparable

with those given in [10]. Over the entire time interval,

the inlet and outlet f lows remain equivalent up to high

accuracy, which is typical for incompressible f low.
CONCLUSIONS

A kinetically consistent model earlier applied to the
simulation of ionized viscous compressible gas f lows
can be successfully used to compute f lows of electri-
cally conducting incompressible f luids in complex
heat transfer systems with magnetohydrodynamic
motors. The proposed algorithm is important for the
simulation of processes in engineering devices on
high-performance computing systems.
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