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Stability Defect Estimation for Sets
in a Game Approach Problem at a Fixed Moment of Time
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Abstract—The game problem of a control system approaching a target set at a fixed point in time is studied.
The stability defect of a set in the position space that is weakly invariant with respect to a finite set of unifica-
tion differential inclusions is estimated from below.
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Given a conflict-controlled system in a finite-
dimensional Euclidean space, we consider the game
problem of the system approaching a compact set at a
finite moment of time [1–8]. The subject of the study
is the stability defect of subsets of the position space of
the system. This concept was introduced in [9, 10] in
order to extend the concept of stability to sets that gen-
erally do not have the stability property.

Involved in the definition of stability, the families
of differential inclusions induced by the dynamics of
the system can have different forms, while identifying
the same sets—stable bridges. In this sense, different
formulations of the stability property are essentially
equivalent. To extend the concept of stability, it was
found convenient to use unification definitions of sta-
bility [11, 12] based on unification families. These
families are infinite, i.e., they consist of infinitely
many differential inclusions. In view of this, a certain
subset of the position space cannot be checked for sta-
bility. Such a check can be made for relatively simple
conflict-controlled systems, since a unification family
can be replaced by an equivalent (from the point of
view of stability) finite set of differential inclusions.
For other conflict-controlled systems, the following
problem is important. Given a finite subset of a unifi-
cation family of differential inclusions and a set in the
system’s position space that is weakly invariant with
respect to the subset, the task is to estimate the degree
to which this set is close to being stable. In other
words, the stability defect of this set has to be esti-
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mated from above. An estimate of this kind for the sta-
bility defect is derived in this paper.

1. GAME APPROACH PROBLEM
AT A FIXED TIME

On a time interval  , we consider a
conflict-controlled system

(1)

where  is the m-dimensional state vector of the sys-
tem from   and  are the controls of the first and
second players, respectively; and  and  are compact
sets in Euclidean spaces  and 

The right-hand side of system (1) satisfies the fol-
lowing conditions.

Condition A. The function  is defined

and continuous on  and, for any

bounded closed domain  there exists a
constant  such that

here, ||f|| is the norm of the vector f in Euclidean space.
Condition В. There exists a constant  such

that

In the game approach problem at a fixed time, the first
player needs to ensure that the state vector  of sys-

tem (1) hits a given compact set  for any
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admissible controls  of the second
player. A solution of the approach problem is sought
in the class of first player’s feedback control proce-
dures [1].

In the evasion problem, which is dual to the
approach one, the second player needs to ensure that
the state vector  of system (1) stays away from an

-neighborhood  of the set  A solution of the
evasion problem is sought in the class of second
player’s anti-feedback control procedures with a
guide [1].

For the differential game consisting of the
approach and evasion problems, the following alterna-
tive is valid: there exists a closed set 
such that the approach problem is solvable for all ini-
tial positions  and the evasion problem is

solvable for all initial positions  [1].
The set W0 plays a key role in solving the approach

problem. For initial positions , a solving
positional procedure of the first player can be designed
as a guided feedback control procedure aiming the
state vector , of system (1) at a guide
evolving in W0. It is well known (see [1]) that the set
W0 has an important property, namely,  is a maxi-
mal -stable bridge. This property underlies algo-
rithms for approximate calculation of  In [11, 12]
W0 was approximately calculated by applying algo-
rithms based on unification constructions or their
modifications.

Below, the -stability of sets contained in 
is described in terms of a unification family from 
Similar families were considered in [11, 12]. This fam-
ily is associated with a set of differential inclusions
used to obtain an infinitesimal description of -stabil-
ity. To define the unification family, we introduce the
following scalar functions on :

 is the Hamilto-

nian of system (1),  = 

where  is the scalar product of vectors l and f
from

In view of Condition В, since M is compact, we
conclude that there exists a large bounded closed
domain Ω in  that contains W0 and all state
vectors x(t) of system (1) hit a given -neighborhood
of the set M at the time .

Let  and K =
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By the definitions of  and K, we have 
In addition to A and В, the following condition is

assumed to hold.
Condition C. It is true that 

Define the set G = B(0; K) = : ||b|| ≤
 For the ball G thus defined, the vectorgrams

   and
their convex hulls  are contained
in

Let  be a finite set of elements  and
 be a set of mappings Fψ: (t, x) 

  satisfying the follow-
ing conditions:

Condition A.1. For any  the set

 is convex and closed in   and,
additionally,

(a) the mapping  is equicontinu-
ous on  (in the Hausdorff metric) with respect to 
from 

(b) for some  ( ) and all
, it is true that

Condition A.2. For any ,

here,  is the support function of the

compact set  and  is the Hausdorff

distance between compact subsets  and F* of 
Introduced with the help of Axioms A.1 and A.2,

the sets    contained in the
ball  for each  can be appropriately called
kernels in  This set of kernels in  is determined by
the structure of the Hamiltonian  and is con-
nected with the latter by Condition A.2. For some
conflict-controlled systems, it may happen that the
structure of  is rather simple, so that, for each

, the ball G contains a finite rather small
number of kernels and this number is independent of

 In these cases, given the set ,
we can effectively develop algorithms for approximate
calculation of the set W0, at least, for systems (1) of low
order. In these cases, algorithms for approximate cal-
culation of W0 are reduced to sets of computational
geometry algorithms.

Several such finite sets  are known.
We describer one of them that corresponds to a fairly
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broad class of systems (1). Assume that system (1) has
the form

where  and Q is a

convex polyhedron in  with a finite set  of
vertices 

For this conflict-controlled system, the finite set
 can be specified as a set of mappings

 

here, 
However, for numerous systems of form (1), the

structure of the Hamiltonian  is not simple
enough to be associated with a finite set 
satisfying Conditions A.1 and A.2, where  has a
small number of elements.

In the study of such systems, it is reasonable to con-
sider an uncountable unification family  =

 satisfying Conditions A.1 and A.2 (see [2,
10, 11]). For , it is defined by the rela-
tions

The sets  are spherical segments in  satisfy-
ing A.1 and A.2, where  and 

Let us describe the u-stability property with the
help of the set 

For a set-valued mapping , let

be the derivative set of the mapping  at the
point   (see [14]).

Definition 1 [14]. A set W is called a u-stable bridge
in the problem of system (1) approaching M if

(i) 

(ii)  for ,
 × S.

In fact, Definition 1 is an infinitesimal formulation
of the u-stability property of the set  It is an
element of derivative-based constructions introduced
into the theory of differential games. This definition
was found useful in detecting various properties of -
stable bridges.
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2. STABILITY DEFECT OF SETS IN 
To calculate W0 approximately in particular game

approach problems, we need algorithms based on
finite sets of mappings  In
this section, we thin the set , namely, pass
to a finite set of mappings. This finite set no longer
identifies a maximal -stable bridge W0 in , but,
instead, identifies a closed set  (

). For  the u-stability property holds with
an error, which is called the stability defect.

Let us define the stability defect of a closed set 
such that  and, from  and

, it follows that 
Assume that the following condition holds for .
Condition D. It is true that

Condition D implies that

and this condition is satisfied, for example, by the u-
stable bridge W0.

Each point   is
associated with the number (see [9, 10])

here, 

where  and F* are compact subsets of 
The quantity  is called the stability

defect of the set  at the point  It can be
treated as a local characteristic of the degree of insta-
bility of  at the point 
i.e., as a measure of the inconsistency, in terms of u-
stability, between the dynamics of system (1) and the
evolution of the set-valued mapping  =

 near  (on the right in time
t). A large value of  means that they are strongly
inconsistent, while the equality  means
that the set  is u-stable at the point 

For  (see [9, 10]), let

The quantity  , is called the stability
defect of the set  at the time 

N.N. Krasovskii’s well-known rule for extremal
aiming at  ( ), or the rule for aiming at a
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guide evolving in  guarantees that, for initial posi-
tions , the state vector  of system (1)
hits M if  is a -stable bridge (i.e.,  on

).
The mapping  is continuous (in

the Hausdorff metric) on  by virtue of Condi-
tions A.1, A.2, and C.

The results of [11, p. 168] imply that  in
Condition A.1 can be specified by the equality λ =

λ(L) = 

In addition to Condition D, we assume that the set
 and the function , obey two more

conditions.
Condition H. There exists a function  as

 such that

here,  

  + δ)};  is the

boundary of the set  in   is the
Hausdorff deviation of  from W*; and  and W*
are compact sets in 

Condition E. The function  is Lebesgue mea-
surable on 

 is the Lebesgue integral;

here,  is a -neighborhood of the set 

in 
It is true that  and  is an

increasing function of  on 
Theorem 1 [10]. The set  is a -stable bridge in

the problem of system (1) approaching the set  at the
time 

The number  is called the stability
defect of the set  [10].

Theorem 1 implies that, if  then the
rule for extremal aiming at  (see [10]) guarantees
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that the state vector   of system (1)
for the first player hits the set  Moreover, if  is
small, this means that the problem of approaching M
has been solved with a small error.

3. UPPER ESTIMATE FOR THE STABILITY 
DEFECT OF SETS IN 

Given a particular problem of approaching M, if
the stability defect  of a set  is small, then it
is reasonable to replace this problem by a milder one,
namely, by the problem of system (1) approaching the
set 

In game problems of approaching  it is reasonable to
consider various remarkable sets 

 A task of much interest is to determine to
which degree these sets  are close to being -stable
in the game problem of system (1) approaching the set
M at the time  Examples of such sets are the set of
programmed absorption in the game problem of
approaching  at the time  and the set of positional
absorption in the game problem of approaching M by
the time  (see [1]).

Below, we consider a closed set  and obtain
an upper estimate for the corresponding stability
defect 

Specifically, given a set  of set-valued mappings
  we choose a finite

subset  

Assume that   is a maximal (in
the sense of inclusion) subset of  that is weakly
invariant with respect to the set  of differential
inclusions

(2)

corresponding to mappings from .

The closed set  satisfies the inclusion ,
along with the quality  In particular game

problems, as a rule,  and, hence,  is not
u-stable. Accordingly, the following question arises: to
which degree is  defined with the help of  far
from being u-stable?

To answer this question, we employ two estimates
used in the proof of the main result of this paper.

1. The function  satisfies the
inequality
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2. It holds that

Below is the main result.
Theorem 2. Let a finite set S(δ) = ,

..., N} be a δ-network in the sphere  where

 Then the stability defect  of the set

 defined with the help of  satisfies
the inequality

(3)

It follows from (3) that a set  ( ) sat-
isfying the -stability property to a sufficiently high
degree can be constructed using the set 
corresponding to a small  It is also of interest to
identify the spectrum of the parameters 
for which

where  is a small number.
Obviously, this issue is reduced to an analysis of the

inequality

(4)

where  and 

A further study of inequality (4) is reduced to com-
paring the coefficients  and 
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