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Abstract—A combined scheme for the discontinuous Galerkin (DG) method is proposed. This scheme
monotonically localizes the fronts of shock waves and simultaneously maintains increased accuracy in the
regions of smoothness of the computed weak solutions. In this scheme, a nonmonotone version of the third-
order DG method is used as a baseline scheme and a monotone version of this method is used as an internal
scheme, in which a nonlinear correction of numerical fluxes is used. Tests demonstrate the advantages of the
new scheme as compared to standard monotonized variants of the DG method.
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1. A method for constructing combined shock-cap-
turing schemes that monotonically localize shock
fronts and simultaneously preserve increased accuracy
in domains of smoothness of the computed weak solu-
tions was proposed in [1, 2]. A combined scheme
involves a baseline nonmonotone scheme that has an
increased order of convergence in the domains of
influence of shock waves. The baseline scheme is used
to construct a discrete solution in the entire computa-
tional domain. In high-gradient domains, where this
solution exhibits spurious oscillations, it is corrected
by numerically solving internal initial—boundary value
problems with the help of a nonlinear flux correction
(NFC) scheme. Examples of NFC schemes are
MUSCL schemes [3], TVD schemes [4], WENO
schemes [5], discontinuous Galerkin (DG) schemes
[6], and CABARET schemes [7]. As a baseline
scheme, a symmetric compact scheme [8] of the third
order of weak approximation was used in [1] and the
Rusanov—Burstein—Mirin (RBM) scheme [9, 10] of
the third order of classical approximation was used in
[2]; the second-order accurate CABARET scheme [7]
on smooth solutions was applied as an internal NFC
scheme. The basic disadvantage of the combined
schemes constructed in [ 1, 2] is that the corresponding
baseline and internal schemes have a widely different
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type, which leads to difficulties in implementing the
numerical algorithm on the boundary of the internal
computational domain. For this reason, a new com-
bined scheme free of this disadvantage is proposed
below. In this scheme, a nonmonotone third-order
DG method [6] is used as a baseline algorithm and an
NFC version of the same method is used as an internal
algorithm.

2. Consider the quasilinear hyperbolic system of
conservation laws

u, +f(u), =0, (1)

where u(x,7) and f(u) are the desired and given
smooth vector functions, respectively.

For system (1), we set up the Cauchy problem with
smooth periodic initial data

u(x,0) = v(x) = v(x + X). 2)

Assume that, for ¢ > 0, problem (1), (2) has a
unique bounded weak solution u(x,7) that contains a
shock wave on an interval of period length X resulting
from a gradient catastrophe.

The Cauchy problem (1), (2) is approximated by a
discontinuous Galerkin method on a uniform spatial
grid x; = ih, where h = X /N is a constant mesh size
and N is the number of grid cells on an interval of
period length. A numerical solution is sought in the
form of a piecewise polynomial function made up of
polynomials in x of degree at most p in each spatial cell

[x;, ;11 € [0, X]:
p
Uix,n = ;U,,a)cp,,(x), 3

x€[x,x4], i=0,1..,N-1,
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where

J
_ X — x<+1/2 _ X + X
0;(x) = (—h[ j s Xy = > =

are the scalar basis functions and U (¢) are the desired
vector functions.

The functions U (¢) are determined by solving the
system of ordinary differential equations

Xit1

%iuww—

(U)o, d

;!: ( :)(sz X (4)
+ F04 (xXi41) — E@u(x;) = 0,

in which F,(#) are the numerical fluxes given by the
Rusanov—Lax—Friedrichs formulas
f(U,_(x:,0) + T(Ui(x;, 1)

2
(U,(x;,1) = U, (x;,1))

2 b

F() =

—a(U,_(x;,1), U(x;,1))

where
a(U,_i(x;,1),U;(x;,1))
= m”E’lX (|7\’m(Ui—l(xi9 t))l: |7\‘m(Ui(xi’ t))|) s
and A, are the eigenvalues of the Jacobian matrix f, of
system (1).
Since, in view of formula (3),

Xi+1

i
a; = J- Qi P;dx,
Xi

dxm P . dU,
= | Uoudx =) a,—L,
dt I P = L™y,

Xi

where the matrices 4, = (a,ij) are nonsingular, system
(4) can be rewritten as

dU; &,
—_ ¥ = bl»Y,-,
dt I;/k k

i=0,1,..,N-1,

(5
j = 09 1’ M) p’
where

Y, = [ f(U)gydx -

Xi

FL 104 (X11) + EQy (X)),

and B, = (bj.k) is the inverse of the matrix A;.

3. System (5) represents a differential-projective
scheme of the discontinuous Galerkin method (differ-
ential in the time variable 7 and projective in the space
variable x). In this paper, we study a third-order
method, for which p = 1 and polynomials (3) at every
time level n are linear functions of x:

n n n X —X; n
Ul(x) = U} + U, T“/z , UL =Uu@,). (6)

The numerical time stepping is based on the third-
order Runge—Kutta method on the uniform grid
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t, = nt with n 2 0, in which the constant time step is
determined by the stability condition
1= La Ulhiyo = Ui(Xi2: 1)
r’rnl%d?»m(Ufﬂ )l / !

where 7 € (0,1) is the Courant number. This discon-
tinuous Galerkin method will be denoted by DGI.

Since the DG1 method has the third order for
smooth solutions and does not belong to the class of
NFC schemes, the numerical solution generated by it
contains noticeable spurious oscillations arising in
computing shock waves. These oscillations are sup-
pressed using the Cockburn limiter [6], according to

which each component U;| of the vector solution U] in
formula (6) is replaced by the quantity

Vi = MUy, Uy 0 = Uig),olUsy = UL 0)); (7)
here, a € [1, 2] is a heuristic parameter chosen in test

computations; Uy, are the corresponding components

of the vectors Uy, for / =i —1,i,i+1; and M is the
minmod operator defined by the formula

®)

where s = sgn(y;) if all the numbers u; in (8) have the
same sign and s = 0 if this condition does not hold.
The DG1 methods with correction based on formula
(7) with oo = 1 and o = 2 are denoted by DG1A1 and
DG1A2, respectively.

When the parameter o involved in the correction
operator (7) is increased, the smoothing properties of
this operator are reduced. Specifically, test computa-
tions show that DG1A1 completely suppresses the
numerical oscillations arising at the shock front in the
DG1 method, while DG1A2 method only partially
suppresses these oscillations. The goal of this work is
to perform a comparative analysis of the accuracy of
DGI1, DG1A1l, and DG1A2 as applied to shock wave
computation and, relying on this analysis and the
approaches developed in [1, 2], to construct a com-
bined discontinuous Galerkin scheme that monotoni-
cally localizes shock fronts and simultaneously pre-
serves increased accuracy in domains of smoothness of
the computed weak solutions.

4. As a particular hyperbolic system, we use the sys-
tem of shallow water equations in the first approxima-
tion. In the case of a rectangular horizontal channel
without bottom friction, its conservative has the form
of (1), where

=[Hj f(u) = I
") ™ g /H +gH’/2)

Here, H(x,1) is the fluid depth, g(x,?) is the mass flow
rate, and g is the acceleration of gravity. For system
(1), (9), we consider Cauchy problem (2) with initial
data

M(”lallza”s) = smin (|”1|,|”2|’|”3|)’

)
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Fig. 1. Depth of fluid obtained according to the combined scheme (open circles) and the integral orders of convergence obtained
according to the combined scheme (solid circles), the DG1 method (squares), the DG1A1 method (crosses), and the DG1A2
method (triangles). The solid line depicts the exact solution produced by the DG1A1 method on a fine grid.

v(x,0) = asin (2ﬂ + ’—‘),
X

H(x,0) = é(a sin (27nx . %r,) N b)z’ (10)

where v = ¢g/H is the fluid velocity (this problem was
considered in [1, 2]). The initial conditions (10) corre-
spond to the following initial values of the invariants

w, =v—-2candw, =v + 2c:
wi(x,0) = —b,

wy(x,0) = 20(x,0) + b = 2asin (277“ + i‘) +b,

where ¢ = \JgH ,a=2, b =10, and X= 10.

The exact solution of this problem was modeled by
numerical computations based on the monotone
DG1A1l method on a fine grid with the spatial step
h = 0.0005. The depth profiles obtained in these com-
putations at the times 7= 1 and 7' = 2.5 are shown by
the solid curves in Fig. 1 on an interval of period
length) and in Fig. 2 (near the shock front). The open
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circles in Figs. 1 and 2 depict the depth computed
using to the modified scheme (see the description
below) on a grid with the spatial step # = 0.05. Figure 2
shows similar results produced by DG1 (squares),
DG1ALI (crosses), and DG1A2 (triangles). In Fig. 2,
we can see oscillations generated by the nonmonotone
DG1 method near the shock front; they are smoothed
by DG1A2 and are completely suppressed by DG1A1.

Figure 1 presents the orders of integral convergence
p, of the discrete solutions on the intervals [x;, X] as
determined by the method proposed in [11], while
Figs. 3 and 4 show the grid functions (r), =
log|dw;(x )|, where dw,(x;) are the relative local imbal-
ances in the computed absolute values of the invari-
ants w; and w, as obtained by the method described
in [12]. The quantities p; and (r;); were computed on
the baseline grid with the spatial step # = 0.005. They
are shown for every 30th spatial node j = 30i in Fig. 1
and for every 35th node j = 35/ in Figs. 3 and 4. These

numerical results are presented for the combined
scheme (circles), DG1 (squares), DG1Al (crosses),
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Fig. 2. Depth of fluid in the neighborhood of the shock front obtained according to the combined scheme (circles), the DG1
method (squares), the DG1AI method (crosses), and the DG1A2 method (triangles). The solid line depicts the exact solution

produced by the DG1A1 method on a fine grid.
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Fig. 3. Graphs of the grid functions (7;) ; obtained at the time 7= 1 according to the combined scheme (circles), the DG1 method
(squares), the DG1A1 method (crosses), and the DG1A2 method (triangles).

and DG1A2 (triangles). The Courant number » = 0.5
was used in all the computations.

5. Figure 1 suggests that the nonmonotone DG
method, despite the noticeable oscillations at the
shock front (Fig. 2), ensures the second order of inte-
gral convergence on the intervals [x;, X], the left
boundary of which lies within the domain of influence
of the shock wave (this domain lies within the interval
[4, 9] at the time 7= 1 and occupies the entire com-
putational domain at T 2.5). Obtained by
monotonizing the DG 1 method, DG1A1 and DG1A2

(like finite-difference NFC schemes) reduce the rate
of this convergence to the first order; as a result, their
accuracy degrades noticeably (in comparison with
DG1) when they are used to compute the invariants in
the influence domain of the shock wave (Figs. 3 and 4).

Figure 1 shows that, in contrast to the DGI1Al
method, DG1 and DG1A2 at 7 = 1 have the third
order of integral convergence on the intervals [x;, X],
whose left boundary lies outside the domain of influ-
ence of the shock wave. On these intervals, DG1A1
has the second order of integral convergence. This
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Fig. 4. Graphs of the grid functions (r;) ; obtained at the time 7 = 2.5 according to the combined scheme (circles), the DG1
method (squares), the DG1A1 method (crosses), and the DG1A2 method (triangles).

result is explained by the fact that DG1 ensures the
third order of local approximation for smooth solu-
tions and the flux correction in DG1A2 preserves this
order, while the stronger flux correction in DG1Al
reduces the accuracy of this approximation to the sec-
ond order. As a result, outside the domain of influence
of the shock wave, the invariants are computed using
DG1A1 with a significantly lower accuracy than in the
case of DG1 and DG1A2 (Fig. 3).

Relying on the presented accuracy analysis of the
DG1 and DG1A1 methods, we can use them to con-
struct a combined discontinuous Galerkin scheme
that monotonically localizes shock fronts and simulta-
neously preserves increased accuracy in the domains
of their influence. Such a combined scheme is con-
structed using the technique developed in [1, 2]. Spe-
cifically, the baseline scheme applied in the entire
computational domain is specified as DG1, which
preserves increased accuracy in the influence domain
ofthe shock wave, while, as an internal scheme used in
a grid neighborhood of the shock front, we choose
DG1A1, which monotonically localizes this front.
The resulting combined DG scheme combines the
advantages of both methods, while being free from
their shortcomings. This is illustrated by the numerical
results produced by this scheme for the shock wave
profile (open circles in Figs. 1 and 2), by the orders of
its integral convergence (solid circles in Figs. 1 and 2),
and by the accuracy of the invariants computed with
the use of this scheme for the approximated solution
(solid circles in Figs. 3 and 4).
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