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Abstract—We have proven that the maximum size k of an induced subgraph of the binomial random graph
 with a given number of edges  (under certain conditions on this function), with asymptotic prob-

ability 1, has at most two values.
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( , )G n p ( )e k
We study some limit characteristics of the binomial
random graph  (see [1–6]), where  is
an arbitrary fixed number independent of n. Recall
that the vertex set of this graph is  and each
pair of vertices is connected by an edge with probabil-
ity p irrespective of the other edges (more formally,

 is a random element taking values in the set of
all graphs on  with distribution  = H) =

 where  is the number of edges
in H).

It was proved in [7–10] that the maximum size
(called the independence number) of the set of disjoint
vertices in , with probability tending to 1, is
equal to  or , where

Some refinements and generalizations of this result
can be found, for example, in [11, 12].

In such cases, we say that the independence num-
ber is concentrated at two points. A natural question to
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ask is whether the condition on the vertex set can be
weakened or changed so that two-point concentration
is preserved. Two ways of such a change are consid-
ered, namely, imposing constraints on the structure of
an induced subgraph and imposing constraints on the
number of edges in an induced subgraph. In this
paper, we use the later way.

Consider two natural constraints: the number of
edges is (i) at most a given number and (ii) equal
exactly to a given number.

Let  be a function. Let  be the max-
imum size  of a set of vertices in  inducing a
subgraph with at most  edges and  be the max-
imum size  of a set of vertices in  inducing a
subgraph with exactly  edges. Here, a set 
of vertices of the graph G induces a subgraph  of G
with the vertex set being  and with the edge set consist-
ing of all edges of G which both ends belonging to 

Under certain conditions on  it was proved in [13]
that  is two-point concentrated.

Theorem 1 (N. Fountoulakis, R.J. Kang, C. McDi-

armid, 2014). Let  and

Then, with probability tending to 1,

Note that, if t grows much faster, then no concen-
tration result holds (there is neither two-point concen-
tration nor concentration at any other fixed number of
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points). For example, if, say, , then

 holds with an asymptotic positive probabil-
ity according to the central limit theorem, since the
number of edges in  has the binomial distribu-

tion with parameters  and . However, for any

fixed positive integer  with a positive asymptotic
probability,  (and this quantity decreases
with growing m). This result is connected with the fact
that, with probability tending to 1, the maximum
degree of the random graph is at most np +

 (see [14]).
For the random variable , such a simple argu-

ment cannot be used for  close to . Nevertheless,

there is no concentration at a finite set of points in this
situation (this result is stated below; it was proved by
J. Balogh and M. Zhukovskii and can be found at
https://arxiv.org/pdf/1904.05307.pdf).

Theorem 2 (Balogh, Zhukovskii, 2019). Let t(k) =

.

(i) There exists a number  such that, for any
 and ,

(ii) Given an arbitrary nonnegative integer sequence

, let

Then, for any , there exist c, C such that

Thus, the question arises as to whether  is two-
point concentrated for asymptotically smaller t. Spe-
cifically, does an analogue of Theorem 1 hold? We
have proved that it holds under even more general

conditions, namely, for .

Theorem 3. Let  and |t(k + 1) –

. Additionally, let  be a certain

(unique for sufficiently large n) solution of the equation
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Then, with probability tending to 1,
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