MATHEMATICS

Neural Network Construction for Recognition Problems with Standard Information on the Basis of a Model of Algorithms with Piecewise Linear Surfaces and Parameters

Academician Yu. I. Zhuravlev*a***, * and A. E. Dyusembaev***b***, ****

Received May 21, 2019

Abstract—For recognition problems with standard information, a neural network reproducing computations performed by a correct algorithm is constructed on the basis of the operator approach and a model of algorithms with parameters and piecewise linear surfaces.

DOI: 10.1134/S1064562419050041

In this paper, the operator approach $[1-3]$ is used as in [4–6] to improve the accuracy of solutions produced by some class of neural networks. Let C_1, C_2, \ldots, C_l be classes that entirely cover the space of initial objects $X = \{x | x = (x_1, x_2, ..., x_n), x \in R^n\},$ where x_i is a feature of the object *x* and $i = 1, 2, ..., n$. Let Q_1, Q_2, \ldots, Q_l be a system of unary two-valued predicates over *X* such that $Q_j(x) \equiv \langle \langle x \in C_j' \rangle \rangle$, $x \in X, j = 1, 2, \ldots, l$. The recognition problem $u \in U$ is an ordered pair $u = (I_0, X^q)$, where $I_0 = \langle X^m, \omega \rangle$ is initial information for the problem $X^m = \{x^1, x^2, \dots, x^m\}$ is a training sample, and $\omega = ||\omega_{ij}||_{m \times l}$ is the classification matrix of the sample . The sample $X^q = \{x^1, x^2, ..., x^q\}$ is a sample of test objects, and the classification matrix $f = ||f_{ij}||_{q \times l}$ of the sample X^q (as in the problem *u*) has to be computed. Here, $f_{ij} = Q_j(x^i)$; $i = 1, 2, ..., q; j = 1, 2, ..., l$. A model $\mathfrak{M}(H, \tilde{\mathbf{x}}, \gamma^m, \theta_1, \theta_2)$ of recognition algorithms was proposed in [1, 2]. Here, *H* is a piecewise linear surface in R^n ; $\tilde{x} = (x_{00}, x_{11}, x_{10}, x_{01})$ is a binary set of parame- X^m ($\omega_{ii} = Q_i(x^i)$, $i = 1, 2, ..., m; j = 1, 2, ..., l$.) re, $f_{ij} = Q_j(x^i)$; $i = 1, 2, ...$
 $(H, \tilde{x}, \gamma^m, \theta_1, \theta_2)$ of recogn

sed in [1, 2]. Here, *H* is
 R^n ; $\tilde{x} = (x_{00}, x_{11}, x_{10}, x_{01})$

ters; $\tilde{\gamma}^m$ is a set of parameters of the weight type; and $\theta_1 = \min \theta_{1j}$ and $\theta_2 = \max \theta_{2j}$ are parameters of the decision rule R^* such that $0 < \theta_{1i} \leq \theta_{2i}, j = 1, 2, ..., l$. Correctness conditions for linear and algebraic closures of algorithms of the model $\mathfrak{M}(H, \tilde{\mathbf{x}}, \tilde{\gamma}^m, \theta_1, \theta_2)$ over sets of problems with standard information were found in [2]. For regular problems, an analytical form $\tilde{\gamma}$ R^* such that $0 < \theta_{1j} \leq \theta_{2j}, j = 1, 2, ..., l$ t type; ar
eters of th
= 1, 2, ..., ,
ebraic clo
 $\tilde{\mathbf{x}}, \tilde{\gamma}^m, \theta_1, \theta$

of a correct algorithm was found in [3], namely,

$$
\mathcal{A}^* = \left((\theta_1 + \theta_2) \sum_{i=1}^q \sum_{j=1}^l f_{ij} \cdot B^k(i, j) \right) \circ R^*, \quad (1)
$$

$$
k = [(\ln q + \ln l + \ln(\theta_1 + \theta_2) - \ln \theta_1)/|\ln a_0|] + 1, (2)
$$

where $a_0 = \max \max_{i} |\Gamma_{rh}(i, j)|$. Here, $\|\Gamma_{rh}(i, j)\|_{\text{ext}}$ is the matrix of the quasi-basis operator $B(i, j)$ [3], $i = 1, 2, ..., q; j = 1, 2, ..., l$. As an initial model, the model of estimate calculation algorithms was used [3]. In what follows, let each recognition algorithm A be such that $A: A = A \circ R^*$ [3], where *A* is a recognition operator and R^* is a threshold decision rule. Given the regular problem *u* [3], an operator *A* computes the matrix $\varphi = ||\varphi_{ij}||_{q \times l}$, where φ_{ij} is an estimate determining the membership of the object $x^i \in X^q$ in the class C_j . In (1), given φ and k computed according to (2), the decision rule $R^*(\theta_1, \theta_2)$ yields a matrix δ coinciding with the matrix *f* of the problem *u*. In a more general case, given φ , the operator R^* computes a matrix that may not coincide with the matrix $f = ||f_{ij}||_{q \times l}$. Let *U* be the class of problems with standard information [2]. Our goal is, relying on $[1-3]$ and the neural network paradigm and using algorithms of the model $\mathfrak{M}(H, \tilde{\mathbf{x}}, \gamma^m, \theta_1, \theta_2)$, to show the possibility of con $a_0 = \max_{i,j} \max_{(r,h)\neq(i,j)} |\Gamma_{rh}(i,j)|$. Here, $||\Gamma_{rh}(i,j)||_{q\times l}$ $B(i, j)$

a Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control", Russian Academy

of Sciences, Moscow, 119333 Russia

b Al-Farabi Kazakh National University,

Almaty, 050040 Kazakhstan

^{}e-mail: zhur@ccas.ru*

*^{**}e-mail: anuardu@yahoo.com*

structing a neural network which, given an arbitrary problem $u \in U$, outputs its matrix *f*. There are a variety of families of recognition algorithms based on the partition principle [2, 7, 8], and the research of them both earlier and today forms the content of the classical field.

In what follows, let $A', A'', A \in \mathfrak{M}$ be operators. The algebra ϑ over $\mathfrak M$ is constructed using the following operations [2, 3]: (a) const *Au*, (b) $(A' + A'')u =$ $A'u + A''u$, and (c) $(A' \cdot A'')u = A'u \cdot A''u$, where, by (c), we mean the power operation *Ak* . Here, neither the operands of the operations nor the resulting matrices in (a–c) must have elements with large moduli. -Suppose that these values are specified on the interval $(-1, 1]$. Let $C_j = X^m \cap C_j$, $j = 1, 2, ..., l$.

Furthermore, relying on the model of algorithms

Furthermore, relying on the model of algorithms $\mathfrak{M}(H, \tilde{\mathbf{x}}, \gamma^m, \theta_1, \theta_2)$ [2] and the neural network para-
digm, we also take into account the weights $p_1, p_2, ..., p_n$ of features of objects from R^n . This model
is digm, we also take into account the weights p_1, p_2, \ldots, p_n of features of objects from R^n . This model is denoted by $\widetilde{\mathfrak{M}}(H, \tilde{p}^n, \tilde{x}, \gamma^m, \theta_1, \theta_2)$, where $\tilde{p}^n =$ $(p_1, p_2, \ldots, p_n), p_i \ge 0$. Let α, β be characteristics of an object *x* associated with its membership in a fixed class and its position relative to *H*. The two-valued predicate $H(x)$ defined on X determines which of the halfspaces relative to *H* contains the object *x*. We deal with n
1
1
~

the values $\alpha = Q_j(x)$ and $\beta = H(x)$. For $\beta : \beta = 1$ if the object *x* belongs to the positive half-space determined by *H* in R^n and $\beta = 0$ otherwise [2]. The values of β for objects from X^m are denoted by β_t , $t = 1, 2, ..., m$, while β^i is used for objects from X^q . The values β^i and $\overline{\beta}^i$ will be used later as synoptic weights of fourth-layer neurons in the network *j*-block (see Fig. 1). The training objects given as input to a neural network are arranged in the form of the list #, $x^m(\alpha_i, \beta_i), \ldots, x^t(\alpha_i, \beta_i), \ldots, x^2(\alpha_2, \beta_2), x^1(\alpha_i, \beta_1)$, which is finished with a special object—the value #. The notation x^t (α_t, β_t) is formal and means only that, given *C_j* and *H*, the object x' is assigned with α_r, β_r .
Moreover, neither object x' nor its weight γ depends
on α_r, β_r . For objects from X^q , the characteristics are
(β , \tilde{x}). The following ques Moreover, neither object x^i nor its weight γ depends on α_t , β_t . For objects from X^q , the characteristics are (β, \tilde{x}) . The following question arises: is it possible to construct a neural network that reproduces the computations executed by a correct algorithm on \tilde{x}). The following question arises: is it possible to construct a neural network that reproduces the computations executed by a correct algorithm on the basis of the model $\widetilde{\mathfrak{M}}(H, \tilde{p}^n, \tilde{\mathsf{x}}, \gamma^m, \theta_1, \theta_2)$? C
レ
~
~

Assuming that the network is multilayered, initially the activation function of first-layer neurons of the network is defined as

$$
F_{\mu\eta}^j(x^t(\alpha_t, \beta_t), p) = \begin{cases} \frac{(x^t(\alpha_t, \beta_t), p)}{x_1^t(\alpha_t, \beta_t) + x_2^t(\alpha_t, \beta_t) + \dots + x_n^t(\alpha_t, \beta_t)}, & \text{if } x^t(\alpha_t, \beta_t) \neq \overline{0} \text{ and } \alpha_t = \mu, \beta_t = \eta \\ p_0, \text{ if } x^t(\alpha_t, \beta_t) = \overline{0} \text{ and } \alpha_t = \mu, \beta_t = \eta \\ 0, \text{ if } \alpha_t \neq \mu \text{ or } \beta_t \neq \eta, \end{cases} \quad \beta_t = \eta
$$

where $\mu, \eta \in \{0, 1\}, p = (p_1, p_2, ..., p_n)$ are synoptic weights of first-layer neurons of the network, and p_0 is a parameter. For $\alpha_\#,\beta_\#$ of the object $\#,$ we assume that , $\alpha_{\mu} = 1$ and $\beta_{\mu} = 0$, $\beta_{\mu} = 1$ hold simultaneously and, additionally, $0 \cdot # = #0 = 0$. The weight is $\gamma(\#)=0$. Ignoring the computations on the adder, we set $F_{\mu\eta}(\#(\alpha_{\#}, \beta_{\#}), p) = \#$. For brevity, along with the notation x^t (α_t,β_t), we also use the notation $x(α,β)$ or, as in Fig. 1, the notation x^t (α, β). Define $\alpha_{\#} = 0$, $\alpha_{\#} = 1$ and $\beta_{\#} = 0$, $\beta_{\#} = 1$

$$
D_{\mu\eta}^j = \sum_{x:\alpha=\mu,\beta=\eta, x\in X^m} \gamma(x(\alpha,\beta)) \cdot F_{\mu\eta}^j(x(\alpha,\beta), p),
$$

where $\gamma(x(\alpha, \beta))$ is the weight of the training object $x(\alpha, \beta)$. Relying on the method for computing the esti $x(\alpha, \beta)$. Relying on the method for computing the estimate Γ_{ij} by an operator of the model \mathfrak{M} and taking into account the neural network paradigm, we assume that, for the given problem u , an operator A of into account the neural network paradigm, we assume that, for the given problem u , an operator A of the model $\mathfrak M$ calculates an estimate determining the

membership of the object x^i in the class C_j , i.e., the element Γ_{ij} of the matrix $\left\| \Gamma_{ij} \right\|_{q \times l}$ defined as

$$
\Gamma_{ij} = \frac{x_{00}(\mathbf{x}^i) \cdot D_{00}^j + x_{11}(\mathbf{x}^i) \cdot D_{11}^j}{x_{10}(\mathbf{x}^i) \cdot D_{10}^j + x_{01}(\mathbf{x}^i) \cdot D_{01}^j + 1}
$$
\n(3)

\nif

\n
$$
H(\mathbf{x}^i) > 0,
$$

$$
\Gamma_{ij} = \frac{\mathbf{x}_{10}(\mathbf{x}^i) \cdot D_{10}^j + \mathbf{x}_{01}(\mathbf{x}^i) \cdot D_{01}^j}{\mathbf{x}_{00}(\mathbf{x}^i) \cdot D_{00}^j + \mathbf{x}_{11}(\mathbf{x}^i) \cdot D_{11}^j + 1}
$$
(4)

where Γ_{ij} is an intermediate estimate to be processed at internal network layers. The main block of the network is represented in the form of a four-layer plane neural network with the nonstandard part consisting of the second to fourth layers (Fig. 1); this part of the network is called a *j*-block.

Inspecting the first-layer neurons (Fig. 1), we see that output in each of them corresponds to the *j*th class and is directed toward the input of a second-layer neuron of the *j*-block; this input has the synoptic weight $\gamma(x^t(\alpha_t, \beta_t))$. Output of the other first-layer neuron with the same value computed by the adder is directed toward its own class; moreover, for each class, the object x^t has its own characteristic α_t . A second-layer neuron accumulates the estimate $D_{\mu\eta}^j$. Partially defined on $X^m \cup \{ \# \}$, the activation function of secobject *x*^{*t*} has its own characteristic α_{*t*}</sub>. A second-layer
neuron accumulates the estimate $D_{\mu\nu}^j$. Partially
defined on *X^m* ∪ {#}, the activation function of sec-
ond-layer neurons is $f_{\mu\nu}^j(x^r, \tilde{x})$ neuron accumulates the estimate $D_{\mu\eta}^j$. Partially
defined on $X^m \cup \{\#\}$, the activation function of sec-
ond-layer neurons is $f_{\mu\eta}^j(x^i, \tilde{x}) = x_{\mu\eta} \cdot D_{\mu\eta}^j$ if $x^i = \#$,
and $f_{\mu\eta}^j(x^i, \tilde{x}) = \Delta$ (not def updated if $x^t \neq \pi$, i.e., the value $f_{\text{un}}^j(x^t, \tilde{x})$ is not defined if the inner loop is not completed $(x^t \neq \#)$. For each $x \in X^q$, the objects x^t from X^m are sequentially given to the input of the network. The inner loop for the given $x^i \in X^q$ is completed at $x^i = \text{\# with com-}$ puting the *i*th row of the matrix $\delta = \left\| \delta_{ij} \right\|_{q \times l}$ at the output of the neural network. The outer loop is completed with the exhaustion of X^q . Each neuron in the second-layer stratification has one more input from its own output in order to accumulate the estimate $D_{\mu\eta}^j$, and its synoptic weight is $d_0 = 1$ as long as $x^t \neq \emptyset$. For $x' = #$, the synoptic weight d_0 becomes "0" and recovers the value of "1" when a new $x^{i} \in X^{q}$ is given to the input of the network. The event $x' = #$ (exhaustion of X^m) takes place for all $j = 1, 2, ..., l$ simultaneously, which leads to a change of the object from X^q . Note that each neuron in the network preserves the adder-computed value, say s, only for a short time until s is transmitted as an output value to the neuron's activation function or until *s* is transmitted as an intermediate value, as in the case of a second-layer neuron, according to the feedback principle, sending *s* to its own input for the next iteration with updated x^t . The activation function R of third-layer neurons of the *j*-block is a diagonal one such that the value at the adder is the output of R. The fourth layer of the *j*-block consists of a nonstandard neuron with two synchronously functioning adders: Σ^1 , Σ^2 and with the twoargument activation function $F_c(a,b) = c \frac{a}{a}$ with a parameter *c.* Depending on the value of the synoptic weight β^i (see Fig. 1), the value of this activation function is one computed by formula (3) or (4) multiplied by *c*. Let U^0 be the class of problems with standard information that do not contain isolated classes [2], and let $f = ||f_{ij}||_{q \times l}$ be the classification matrix of the $X^m \cup \{\#\}$, the activation function
eurons is $f_{\mu\eta}^j(x^i, \tilde{x}) = x_{\mu\eta} \cdot D_{\mu\eta}^j$ if
 $f(x) = \Delta$ (not defined) means only the $x^i \neq \#$, i.e., the value $f_{\mu\eta}^j(x^i, \tilde{x})$ $F_c(a, b) = c \frac{a}{b+1}$ *b*

problem u. Relying on what was described above and the model $\widetilde{\mathfrak{M}}(H, \tilde{\mathbf{x}}, \tilde{p}^n, \gamma^m, \theta_1, \theta_2),$ in view of Theorems 3 and 4 from [2], we formulate the following result. OGNI
Relyin
m(H s $\frac{1}{2}$

Theorem 1. Let $u = (I_0, X^q)$ be an arbitrary problem from U^0 . Then, for the problem u , a six-layer plane neural *network with l blocks (j-blocks) can be constructed such* that, given the classification matrix $f = \| f_{ij} \|_{qxt}$ of the problem u and the parameter k , the matrix $\delta = \big\|\delta_{ij}\big\|_{q\times l}$ output by *the network coincides with the matrix f of the problem u.*

To expand the class of problems for which a neural network can be constructed that outputs the classification matrix of a problem, the neural network is supplemented with an additional intermediate layer consisting of a nonstandard neuron with an activation function depending on two variables and a parameter

c. This function is denoted by $F_c^0(a',b')$. Note that $F_c^0(a', b') = ca'b'$. Recall that a neuron of this kind was used previously as a fourth-layer neuron in the *j*-block.

The shaded rectangular areas in Fig. 2 correspond to the first layer of neurons of the network shown in Fig. 1. The constructed network fragment, which consists of two *j*-blocks *j*', *j*'', is supplemented with a fifthlayer neuron (Fig. 2). By analogy with the above-mentioned structure, the resulting one is called a *J-*block and the network itself is called a *J*-network (Fig. 3.). Assume that $J = 1, 2, \ldots, l$ and each *J*-block computes its own estimate. In fact, for each $r = 1, 2, ..., q$, the rows of the estimate matrix $\left\| \Gamma_{rh}(i,j) \right\|_{q \times l}$ of the quasibasis operator $B(i, j)$ are sequentially calculated in the fifth layer. Eventually, we obtain a seven-layer plane neural network (Fig. 3), where the fifth layer contains *l* blocks (*J-*blocks).

Figure 3 shows an adder of the fifth layer as Σ_5^J , which is already known to represent the pair $\sum_{5}^{J} = \left(\sum_{5}^{1}, \sum_{5}^{2}\right)$ (see Fig. 2). The sixth layer of the network has to implement the power operation for each quasi-basis operator: $B^{k}(i, j)$, $1 \le i \le q$; $1 \le j \le l$, for which $f_{ij} \neq 0$. The neuron of this operation has two inputs, and the synoptic weight of one of them is d_1 . Initially, $d_1 = 1$ to send the previously computed estimate Γ_{rh} to the adder. The synoptic weight d_2 of the second input is equal to 0. Next, the value of d_1 is replaced by 0 and Γ_{rh} becomes the synoptic weight of the second input of this neuron. This input receives the feedback from the neuron output and, by means of the activation function, given k and a_0 (see (2)) the neuron computes an element of the matrix of the operator $B^{k}(i, j)$ [9]. The output of this neuron is "strengthened" be the value $\theta = \theta_1 + \theta_2$ for pairs $f_{i_v,j_v} = 1$ such that (Fig. 3). Here, the activation func-Г*rh*

Fig. 1.

Fig. 2. J-block.

Fig. 3. Seven-layer J-network.

tion is a partially defined diagonal activation function. The adders of seventh-layer neurons sequentially compute the rows of the matrix $\varphi = ||\varphi_{ij}||_{q \times l}$, which are used by the activation function to compute the corresponding rows of the matrix $\delta = ||\delta_{ij}||_{q \times l}$. Let *U* be the class of problems [2] that satisfy the following condi-

DOKLADY MATHEMATICS Vol. 100 No. 2 2019

tions: (c) $X^q \cap X^m = \emptyset$ and (d) $C_j \neq C_{j'}$ for $j' \neq j''$: $1 \leq j', j'' \leq l$.

Theorem 2. Let $u = (I_0, X^q)$ be an arbitrary problem *from U. Then*, *for the problem u*, *a seven-layer plane neural network with l blocks* (*J-blocks*) *can be constructed such that, given the classification matrix f =* $||f_{ij}||_{qx}$ of the problem *u* and the parameter *k*, the matrix $\delta = \|\delta_{ij}\|_{q\times l}$ output by the network coincides with the *matrix f of the problem u.*

Note that the construction of *j-*blocks of the network does not require the construction of a piecewise linear surface H ; instead, it is sufficient to specify the characteristics of the objects from $X^q \cup X^m$ for all cases from [2]. The parameters $\gamma_1, \gamma_2, ..., \gamma_m$ and $\tilde{x} = (x_{00}, x_{11}, x_{10}, x_{01})$ are determined according to the cases of [2], the parameter *c* is specified according to [2, 3]; the feature weights are [2, 3]; the feature weights are $p_1 = p_2 = \ldots = p_n = p_0 = 1$; and the parameters θ_1 , θ_2 work does not requir
linear surface *H*; inst
characteristics of th
cases from [2]. Th
 $\tilde{x} = (x_{00}, x_{11}, x_{10}, x_{01})$

are such that $0 < \theta_1 \le \theta_2 < 1$ and $\theta_1 \le (1 - \theta_2)/2$. Overall, all these parameters ensure the construction of a neural *J*-network for the problem $u \in U$.

REFERENCES

- 1. Yu. I. Zhuravlev, Dokl. Akad. Nauk SSSR **231** (3), 532–535 (1976).
- 2. Yu. I. Zhuravlev, Kibernetika, No. 4, 5–17 (1977).
- 3. Yu. I. Zhuravlev, Kibernetika, No. 2, 35–43 (1978).
- 4. A. E. Dyusembaev and D. R. Kaliazhdarov, Dokl. Math. **91** (2), 236–239 (2015).
- 5. A. E. Dyusembaev, Dokl. Math. **95** (2), 125–128 (2017).
- 6. A. E. Dyusembaev and M. V. Grishko, J. Pattern Recogn. Image Anal. **27** (2), 166–174 (2017).
- 7. K. V. Rudakov, Dokl. Akad. Nauk SSSR **231** (6), 1296–1299 (1976).
- 8. V. N. Vapnik, *Statistical Learning Theory* (Wiley, New York, 1998).
- 9. A. E. Dyusembaev and M. V. Grishko, Comput. Math. Math. Phys. **58** (10), 1673–1686 (2018).