
ISSN 1064-5624, Doklady Mathematics, 2019, Vol. 100, No. 2, pp. 411–415. © Pleiades Publishing, Ltd., 2019.
Russian Text © The Author(s), 2019, published in Doklady Akademii Nauk, 2019, Vol. 488, No. 1.

MATHEMATICS
Neural Network Construction for Recognition Problems 
with Standard Information on the Basis of a Model of Algorithms 

with Piecewise Linear Surfaces and Parameters
Academician Yu. I. Zhuravleva,* and A. E. Dyusembaevb,**

Received May 21, 2019

Abstract—For recognition problems with standard information, a neural network reproducing computations
performed by a correct algorithm is constructed on the basis of the operator approach and a model of algo-
rithms with parameters and piecewise linear surfaces.
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In this paper, the operator approach [1–3] is used
as in [4–6] to improve the accuracy of solutions pro-
duced by some class of neural networks. Let

  be classes that entirely cover the space of
initial objects ,
where xi is a feature of the object x and .
Let   be a system of unary two-valued pred-
icates over X such that ,

. The recognition problem u ∈ U is
an ordered pair u = (I0, Xq), where  is ini-
tial information for the problem u,

 is a training sample, and
 is the classification matrix of the sample

. The

sample   is a sample of test objects,
and the classification matrix  of the sample
Xq (as in the problem u) has to be computed.
Here, ; . A model

 of recognition algorithms was pro-
posed in [1, 2]. Here, H is a piecewise linear surface
in ;  is a binary set of parame-
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ters;  is a set of parameters of the weight type; and
  and   are parameters of the

decision rule  .
Correctness conditions for linear and algebraic clo-
sures of algorithms of the model 
over sets of problems with standard information were
found in [2]. For regular problems, an analytical form
of a correct algorithm was found in [3], namely,

(1)

(2)

where   Here,  is

the matrix of the quasi-basis operator  [3],
. As an initial model, the

model of estimate calculation algorithms was used [3].
In what follows, let each recognition algorithm  be
such that :  [3], where A is a recognition
operator and   is a threshold decision rule. Given the
regular problem u [3], an operator A computes the
matrix , where   is an estimate determining

the membership of the object   in the class Cj.
In (1), given ϕ and k computed according to (2), the
decision rule   yields a matrix δ coinciding
with the matrix f of the problem u. In a more general
case, given ϕ, the operator  computes a matrix that
may not coincide with the matrix . Let U be
the class of problems with standard information [2].
Our goal is, relying on [1–3] and the neural network
paradigm and using algorithms of the model

, to show the possibility of con-
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structing a neural network which, given an arbitrary
problem , outputs its matrix f. There are a variety
of families of recognition algorithms based on the par-
tition principle [2, 7, 8], and the research of them both
earlier and today forms the content of the classical
field.

In what follows, let  be operators. The
algebra ϑ over  is constructed using the following
operations [2, 3]: (a) , (b)  =

, and (c)  = , where, by
(c), we mean the power operation Ak. Here, neither
the operands of the operations nor the resulting matri-
ces in (a–c) must have elements with large moduli.
Suppose that these values are specified on the interval

. Let Cj = .
Furthermore, relying on the model of algorithms

 [2] and the neural network para-
digm, we also take into account the weights

  of features of objects from Rn. This model
is denoted by , where  =

. Let  be characteristics of an
object x associated with its membership in a fixed class
and its position relative to H. The two-valued predi-
cate H(x) defined on X determines which of the half-
spaces relative to H contains the object x. We deal with

the values  and . For  if the
object x belongs to the positive half-space determined
by H in Rn and  otherwise [2]. The values of β for
objects from Xm are denoted by  , t = 1, 2, …, m, while

  is used for objects from . The values   and 
will be used later as synoptic weights of fourth-layer
neurons in the network j-block (see Fig. 1). The train-
ing objects given as input to a neural network are
arranged in the form of the list #,

, which
is finished with a special object—the value #. The
notation   is formal and means only that,
given Cj and H, the object   is assigned with .

Moreover, neither object   nor its weight γ depends
on . For objects from , the characteristics are

.  The following question arises: is it possible to
construct a neural network that reproduces the com-
putations executed by a correct algorithm on the basis
of the model ?

Assuming that the network is multilayered, initially
the activation function of first-layer neurons of the
network is defined as

where ,  are synoptic
weights of first-layer neurons of the network, and is
a parameter. For ,  of the object #, we assume that

,  and ,  hold simultane-
ously and, additionally, 0⋅# = #⋅0 = 0. The weight is

. Ignoring the computations on the adder, we
set . For brevity, along with the

notation , we also use the notation  or,
as in Fig. 1, the notation  Define

where  is the weight of the training object
. Relying on the method for computing the esti-

mate  by an operator of the model  and taking
into account the neural network paradigm, we assume
that, for the given problem u, an operator  of the
model  calculates an estimate determining the

membership of the object  in the class , i.e., the
element  of the matrix  defined as

(3) 

(4)

where  is an intermediate estimate to be processed at
internal network layers. The main block of the net-
work is represented in the form of a four-layer plane
neural network with the nonstandard part consisting
of the second to fourth layers (Fig. 1); this part of the
network is called a j-block.
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Inspecting the first-layer neurons (Fig. 1), we see
that output in each of them corresponds to the jth class
and is directed toward the input of a second-layer neu-
ron of the j-block; this input has the synoptic weight

. Output of the other first-layer neuron
with the same value computed by the adder is directed
toward its own class; moreover, for each class, the
object  has its own characteristic . A second-layer
neuron accumulates the estimate  Partially

defined on , the activation function of sec-
ond-layer neurons is  if ,

and  (not defined) means only that  is

updated if  i.e., the value  is not

defined if the inner loop is not completed ( ).
For each , the objects  from  are sequen-
tially given to the input of the network. The inner loop
for the given  is completed at  with com-
puting the ith row of the matrix  at the out-
put of the neural network. The outer loop is completed
with the exhaustion of . Each neuron in the sec-
ond-layer stratification has one more input from its
own output in order to accumulate the estimate ,

and its synoptic weight is  as long as . For
, the synoptic weight  becomes “0” and

recovers the value of “1” when a new  is given
to the input of the network. The event  (exhaus-
tion of ) takes place for all  simultane-
ously, which leads to a change of the object from .
Note that each neuron in the network preserves the
adder-computed value, say , only for a short time
until  is transmitted as an output value to the neu-
ron’s activation function or until s is transmitted as an
intermediate value, as in the case of a second-layer
neuron, according to the feedback principle, sending 
to its own input for the next iteration with updated

The activation function  of third-layer neurons of
the j-block is a diagonal one such that the value at the
adder is the output of . The fourth layer of the j-block
consists of a nonstandard neuron with two synchro-
nously functioning adders: Σ1, Σ2 and with the two-

argument activation function  with a

parameter c. Depending on the value of the synoptic
weight  (see Fig. 1), the value of this activation func-
tion is one computed by formula (3) or (4) multiplied
by c. Let  be the class of problems with standard
information that do not contain isolated classes [2],
and let  be the classification matrix of the
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problem  Relying on what was described above and
the model , in view of Theorems
3 and 4 from [2], we formulate the following result.

Theorem 1. Let  be an arbitrary problem
from . Then, for the problem , a six-layer plane neural
network with  blocks (j-blocks) can be constructed such
that, given the classification matrix  of the prob-
lem  and the parameter , the matrix  output by
the network coincides with the matrix  of the problem 

To expand the class of problems for which a neural
network can be constructed that outputs the classifi-
cation matrix of a problem, the neural network is sup-
plemented with an additional intermediate layer con-
sisting of a nonstandard neuron with an activation
function depending on two variables and a parameter
c. This function is denoted by  Note that

. Recall that a neuron of this kind was
used previously as a fourth-layer neuron in the j-block.

The shaded rectangular areas in Fig. 2 correspond
to the first layer of neurons of the network shown in
Fig. 1. The constructed network fragment, which con-
sists of two j-blocks j', j'', is supplemented with a fifth-
layer neuron (Fig. 2). By analogy with the above-men-
tioned structure, the resulting one is called a J-block
and the network itself is called a J-network (Fig. 3.).
Assume that  and each J-block computes
its own estimate. In fact, for each , the
rows of the estimate matrix  of the quasi-
basis operator  are sequentially calculated in the
fifth layer. Eventually, we obtain a seven-layer plane
neural network (Fig. 3), where the fifth layer contains
l blocks (J-blocks).

Figure 3 shows an adder of the fifth layer as ,
which is already known to represent the pair

 (see Fig. 2). The sixth layer of the
network has to implement the power operation for
each quasi-basis operator: , ,
for which . The neuron of this operation has two
inputs, and the synoptic weight of one of them is .
Initially,  to send the previously computed esti-
mate  to the adder. The synoptic weight d2 of the
second input is equal to 0. Next, the value of  is
replaced by 0 and  becomes the synoptic weight of
the second input of this neuron. This input receives
the feedback from the neuron output and, by means of
the activation function, given  and (see (2)) the
neuron computes an element of the matrix of the oper-
ator  [9]. The output of this neuron is
“strengthened” be the value  for pairs

 such that  (Fig. 3). Here, the activation func-

.u
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Fig. 1.
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Fig. 2. J-block.
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tion is a partially defined diagonal activation function.
The adders of seventh-layer neurons sequentially
compute the rows of the matrix , which are×ϕ = ϕ|| ||ij q l
used by the activation function to compute the corre-
sponding rows of the matrix . Let U be the
class of problems [2] that satisfy the following condi-

×δ = δ|| ||ij q l
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tions: (c)  and (d)  for

.

Theorem 2. Let  be an arbitrary problem
from U. Then, for the problem u, a seven-layer plane
neural network with l blocks (J-blocks) can be con-
structed such that, given the classification matrix f =

 of the problem u and the parameter k, the matrix

δ =  output by the network coincides with the

matrix f of the problem u.

Note that the construction of j-blocks of the net-
work does not require the construction of a piecewise
linear surface H; instead, it is sufficient to specify the

characteristics of the objects from  for all

cases from [2]. The parameters  and

 are determined according to the

cases of [2], the parameter c is specified according to
[2, 3]; the feature weights are

; and the parameters θ1, θ2

are such that  and .

Overall, all these parameters ensure the construction

of a neural J-network for the problem .
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