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Abstract—A sharp integral inequality is proved that is used to derive a Sobolev interpolation inequality. A gen-
eralization of the logarithmic Sobolev inequality is proposed based on the Sobolev interpolation inequality.
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1. SOBOLEV INTERPOLATION INEQUALITY

In this section, we prove a sharp integral inequality
implying, due to the Hausdorff–Young inequality, a
Sobolev interpolation inequality.

1.1. Integral Inequality

For convenience, we use the following notation:

is the norm in ; the index p in  with p = 2 is
omitted, that is, we write  in this case. Let k be any
positive number. Let  be a given positive number that
is arbitrary if  and satisfies the inequality

 if . We set ; for a given

 we introduce the quantity .

For any θ > 0, we define the Euler gamma function

;  for all

β > 0 and γ > 0 is the Euler beta function; ;
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Lemma 1. Let  and α be the numbers defined
above, , r = |x|. Then
the following integral inequality holds:

(2)

where  is the constant defined by (1). The constant
is sharp: inequality (2) turns into equality with

where  and ω3 are arbitrary positive numbers.

1.2. Hausdorff–Young Inequality

Lemma 2. Let

be the Fourier transform of a function U(x), ,
. Then the Hausdorff–Young inequality
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, holds with the best Beckner–

Babenko constant [1–4].

1.3. Results

Theorem 1. Let  and α be the numbers defined
above, , . Then
the following multiplicative Sobolev inequality holds:

(3)

Here,  where  is defined

by (1).
We give a scheme for proving (3).
In view of inequality (2), we conclude that

(4)

Due to the Plancherel–Parseval theorem, we have

(5)
Therefore, under the assumptions of Theorem 1, we
deduce that . Then the Hausdorff–Young

inequality implies

(6)

Inequality (3) follows from (4)–(6).
Assume that k = 2 in Theorem 1. Owing to the rela-

tion , Theorem 1 implies the following
corollary.

Corollary 1. Let  with  and

 with  and let . Let

. Then the following Gagliardo–Niren-
berg–Sobolev interpolation inequality holds:

(7)

Here, , where

Assume that k = 4 in Theorem 1. Owing to the rela-
tion  [5], Theorem 1 implies the fol-
lowing corollary.
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Corollary 2. Let  with  and

 with n > 4, and let . Let

 and . Then the following
Sobolev interpolation inequality holds:

(8)

Here,

where

2. LOGARITHMIC GROSS–SOBOLEV 
INEQUALITY

Theorem 2. Let k be an arbitrary positive number,
, and . Then the fol-

lowing logarithmic Gross–Sobolev inequality holds:

(9)

Theorem 1 implies the following propositions.

Proposition 1. Let . Then the follow-
ing logarithmic Gross–Sobolev inequality holds:

(10)

Inequality (10) is sharp: it turns into equality with

where a and b are arbitrary positive constants.
We put k = 4 in (9).

Proposition 2. Let . Then the follow-
ing logarithmic Gross–Sobolev inequality holds:
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Inequality (10) was first proved by Gross [6]. Beckner
[7] notes that after Gross found the logarithmic
Sobolev inequality, it became folklore. Other inequal-
ities of Gross–Sobolev type were proved in [4, 8–10]
and etc.

We give a scheme for proving (9). We rewrite (3) in
the form

(12)

where

It is straightforward to show that  and

. Thus, inequality (12) remains valid even
when α = 0.

We consider the function

where . Since  for ,
we have . When calculating , we should
take into account that  and  =

Inequality (2) is also used to prove the generalized
entropy inequality

(13)

Under the condition , we have 
L2(Rn) for any k > 0. Inequality (13) is sharp: it turns
into equality with

where a and b are arbitrary positive constants [11].
Remark 1. Interpolation inequality (7) was also

proved in [12] with another constant. This inequality is
used to analyze the global solvability of the Cauchy prob-
lem for a nonlinear evolution Schrödinger equation [13],
as well as in the spectral theory for Schrödinger opera-
tors [12].

Remark 2. Inequality (13) with k = 2 was
announced in [13] and was proved in [14].
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