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Abstract—An explicit combined shock-capturing finite-difference scheme is constructed that localizes shock
fronts with high accuracy and simultaneously preserves the high order of convergence in all domains where
the computed weak solutions are smooth. In this scheme, Rusanov’s explicit nonmonotone scheme of the
third order is used as a basis one, while the internal scheme is based on the second-order monotone CABARET.
The advantages of the new scheme as compared with the WENO scheme of the fifth order in space and third
order in time are demonstrated in test computations.
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1. In his classical work [1] associated with a solu-
tion technique for Riemann problems, Godunov
introduced the concept of a monotone finite-differ-
ence scheme and proved that, among linear difference
schemes, there are no monotone ones with an order of
accuracy higher than the first. The subsequent devel-
opment of the theory of shock-capturing difference
schemes for hyperbolic systems of conservation laws
was aimed to a large degree at the overcoming of the
Godunov order barrier. As a result, various classes of
difference schemes were developed in which a high
order of accuracy for smooth solutions and monoto-
nicity were achieved by applying nonlinear f lux cor-
rection (NFC), which leads to the nonlinearity of
these schemes even in the approximation of the linear
transport equation. The basic classes of NFC schemes
include MUSCL [2], TVD [3], NED [4], WENO [5],
and CABARET [6] schemes. The basic advantage of
these schemes is that they localize shock waves with
high accuracy in the absence of considerable spurious
oscillations on their fronts.

It has been shown that NFC schemes have at most
the first order of both local convergence in shock
influence regions [7–9] and integral convergence on
intervals with one of the boundaries lying in a shock
influence region [10–12]. The cause of this is that the
flux correction procedure characteristic of NFC
schemes leads to less smooth numerical f luxes, which
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in turn lead to a lower order of approximation of the
Hugoniot -conditions on shock fronts [13]. At the
same time, classical high-order accurate nonmono-
tone schemes that have analytical functions of numer-
ical f luxes and, hence, approximate the Hugoniot -
conditions with high accuracy preserve the high order
of convergence in negative norm in integration over
domains containing strong discontinuities [10, 11]. As
a result, these nonmonotone schemes, in contrast to
NFC ones, preserve the high order of convergence in
regions of shock influence despite the noticeable spu-
rious oscillations on their fronts.

In [14], a method was proposed for constructing
shock-capturing difference schemes that combine the
advantages of both NFC and classical nonmonotone
schemes, namely, they localize shock fronts with high
accuracy and simultaneously preserve the high order
of convergence in all domains where the considered
weak solutions are smooth. A combined difference
scheme involves a nonmonotone basis scheme of high
order of convergence applied in regions of shock influ-
ence. The basis scheme is used to construct a differ-
ence solution in the entire computational domain. In
high-gradient regions, where this solution has spuri-
ous oscillations, it is corrected by solving internal ini-
tial–boundary value problems with the help of an
NFC scheme. In the combined scheme considered in
[14], a compact scheme of the third order of weak
approximation was used as a basis one [10] and the
internal NFC scheme was the CABARET one, which
is second-order accurate for smooth solutions [6].

The basic disadvantage of the combined scheme
constructed in [14] is that the corresponding basis and
internal schemes have widely different types: the basis
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compact scheme is implicit and three-time-level,
while the internal CABARET scheme is explicit and
two-time-level. As a result, difficulties arise in the
numerical implementation of such an algorithm.
Accordingly, we propose a new combined finite-dif-
ference scheme in which the nonmonotone basis one
and the internal NFC one are both explicit and have
two levels in time. More specifically, Rusanov’s third-
order scheme [15] and a monotone second-order
modification of the CABARET scheme are used as
basis and internal ones. The advantages of the new
scheme as compared with the WENO scheme of the
fifth order in space and the third order in time [5] are
demonstrated using test computations.

2. Consider a quasilinear hyperbolic system of con-
servation laws

(1)

where  and  are the unknown and given
smooth vector functions, respectively, containing k
components. For system (1), we set up the Cauchy
problem with smooth periodic initial data

(2)
Assume that problem (1), (2) has a unique weak solu-
tion  that contains a shock wave on an interval of
period length  arising due to a gradient catastrophe
at some time . A combined finite-difference
scheme approximating this problem is constructed on
a rectangular grid

(3)

where  is the (constant) mesh size in space,

is the time step determined by the Courant condition
with  being the eigenvalues of the Jacobian matrix

 of system (1), and z = 0.5 is the safety factor.
Test computations have shown that oscillations

arising on shock waves in classical nonmonotone
schemes of high accuracy carry information on the
wave structure of the Fourier series expansion of the
strong discontinuity at the shock front; as a result,
these schemes approximate the Hugoniot -condi-
tions on shock waves with high accuracy. In NFC
schemes (which suppress oscillations on shock waves),
this information is lost, which leads to their reduced
accuracy in regions of shock influence. Therefore, in
the combined scheme, the periodic difference solution

of Cauchy problem (1), (2) produced by Rusanov’s
scheme is independent of the difference solution

 based on the internal CABARET
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scheme, which is used to smooth oscillations in the
grid neighborhood

(4)

of the smeared shock front, where  is an integer
specifying the width of the domain ,  =

 is the spatial difference derivative, and 

is a parameter determining the beginning of the for-
mation of a numerical shock wave.

The monotone difference solution  is obtained by
solving the initial–boundary value problem for system
(1) in domain (4) by applying the monotone modifica-
tion of the CABARET scheme. The initial and bound-
ary conditions for this interior problem are specified
using the difference solution  produced by Rusa-
nov’s scheme. As a result, the combined difference
scheme yields the solution

(5)

The basic advantage of this solution is that it preserves
high accuracy in the region of shock influence (due to
Rusanov’s third-order scheme used in the entire com-
putational domain) and simultaneously monotoni-
cally localizes the shock wave (due to the second-order
monotone modification of the CABARET scheme
applied in a neighborhood of its front).

The technique described allows yields the
smoothed solution  in domain (4) after the basis

solution  was obtained in the entire computational
domain (3). However, in practice, it is more conve-
nient to find these solutions simultaneously at each
time level. Given the solutions  and  and, hence,

the solution  at the nth time level, Rusanov’s basis

scheme is first used to find the solution  at the
th time level of domain (3). This solution spec-

ifies the boundary conditions at the spatial nodes
 and , which are used to determine

the solution  at the th time level of domain
(4) by applying the internal CABARET scheme. As a
result, the solution  of the combined difference
scheme at the th time level of computational
domain (3) is given by formula (5).

3. As a particular hyperbolic system, we use the
shallow water equations in the first approximation.
Written in conservative form in the case of a rectangu-
lar horizontal channel without bottom friction, they
have the form of (1), where
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Fig. 1. Fluid depth produced by the combined scheme (open circles) and the integral orders of convergence in Rusanov’s scheme
(solid circles) and the WENO scheme (triangles). The solid line depicts the exact solution modeled by the CABARET scheme on
a fine grid.

1

2

3

1

2

3

0 2 4 6 8 10 x

h, �

T = 1

T = 2.5
(6)

Here,  is the depth of the f low,  is the f low
rate, and g is the acceleration of gravity (in the compu-
tations, g = 10). For system (1), (6), we consider Cau-
chy problem (2) with periodic initial data

(7)

where  is the f luid velocity (this prob-

lem was considered in [11, 14]). The initial data (7)
correspond to the following initial values of the invari-
ants  and :
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where , , , and X = 10.

The exact solution of this problem is simulated by
applying the CABARET scheme on a fine grid with
spatial stepsize . The depth profiles obtained
at the times  and  are shown by the solid
line in Fig. 1 (on an interval of period length) and in
Fig. 2 (near the shock front). The numerical results for
the given problem on a grid with the spatial stepsize

 as obtained using the combined, WENO, and
Rusanov’s schemes are shown in Figs. 1 and 2. Oscil-
lations arising in Rusanov’s scheme near the shock
front can be seen in Fig. 2. In the combined scheme,
they are smoothed out by applying the CABARET
scheme in domain (4), where  and p = 1. In the
combined scheme, the shock front is smeared consid-
erably less than in the WENO scheme.

For the difference solution on the intervals ,
in Fig. 1 shows the orders of integral convergence 
obtained in Rusanov’s scheme (solid circles) and the
WENO scheme (triangles). Figure 3 presents the grid
functions  at the time ,
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Fig. 2. Fluid depth near the shock front as produced by the combined scheme (open circles), the WENO scheme (solid circles),
and Rusanov’s scheme (crosses). The solid line depicts the exact solution modeled by the CABARET scheme on a fine grid.
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Fig. 3. Grid function , where  is the relative local imbalance between the absolute values of the invari-
ants (a)  and (b)  at  computed using the present combined scheme (solid circles), the combined scheme from [14]
(squares), and the WENO scheme (open circles).
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where  are the relative local imbalances
between the absolute values of the invariants (a)  and
(b)  computed using the present combined scheme,
the combined scheme from [14], and the WENO
scheme. The integral orders of convergence and the
relative local imbalances were computed by applying
the method described in [10, 11] on a basis grid with
the spatial stepsize , which corresponds to
2000 spatial grid cells on the period-long interval [0, X].
The results of these computations are presented for
every 20th spatial node  in Fig. 1 and for every
30th node  in Fig. 3.

Figure 2 shows that the shock front is localized by
the combined scheme monotonically and more accu-
rately than by the WENO scheme. At the same time,
Fig. 1 reveals that Rusanov’s basis scheme and, hence,
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the combined scheme based on it, in contrast to the
WENO one, preserve the high order of integral con-
vergence on the intervals , whose left endpoints
belong to the region of shock influence (this region
lies within the interval  at the time  and
occupies the entire computational domain at ).
This means that the combined scheme transfers the
Hugoniot conditions through the shock front with
high accuracy, so it preserves the high order of conver-
gence in the region of shock influence. As a result, in
the shock influence region, the accuracy of the invari-
ants computed using the combined schemes con-
structed in this paper and proposed in [14] is higher by
several orders of magnitude than that achieved with
the WENO scheme (Fig. 3).
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