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Abstract—New estimates are obtained for the chromatic numbers of graphs from various classes of distance

graphs with vertices in { — 1,0,1}".
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In the context of the classical Hadwiger—Nelson
problem concerning the chromatic number of a space
(see [1]), Raigorodskii began to study the chromatic

numbers of distance graphs with vertices in {—1,0,1}"
(see [2]). Specifically, the following problem was
posed in [3, 4].

Let n be a positive integer and /_,/,,/; be positive
integers summing to n. Additionally, let » € N. Define

Vol I, h) = {x = (X3, %,): % € { = 1,0,1},
fix, = =1 = L,
Kirx; =0l =1y, [izx; = B =4},
E, (L, 1,0,0) = {x,y}: [x —y| = b},
G (L, 1,1, 0) = V(i Ios 1), By, o, 1, B)).

The task is to find or estimate the quantity

Xl :X({ - 1’ 05 l}n;l—ls 109 ll):ml?'x X(Gn(l—l’ 105 lla b)),

where y(G) is the usual chromatic number of the
graph G.

Two main theorems were proved in [3, 4]. Before
formulating them, we introduce some notation. First,

for iy, i, € {—1,0,1}, let I(i,,,) = [, + 1, ,
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Vi, 1) ==, X)) % € L b},
Wizx; =i} = li1’|{i: X; = hi| = L}

5. = max (X s.. = min (X
%2 x,er(l,»l,l,p( Y s, x,er<1,~,,1,-2>( ),
S_01 = max (X s = min (X,y).
1,0,1 x,YEVn(thn,/])( ,y)’ =-101 nyEVn(/—lJU’ll)( ’y)

Second, let p,,, p_i, p_1;,and p”},; be minimum odd
primes (m > 2 is a positive integer that is not related to
the dimension) such that

Soq — 2pos < Sop S0~ 2p_1p < S 1

— —_ m
S =8P < Sy S = MP-ion < Sy

Finally, let

!
Pyl 1) = [V, (L o, 1)) = —2—.
( 1> %0 l) | ( 140 1)| 171!10!11!

In this notation, the following results are true.
Theorem A. Let i, < iy;i, i, € {-1,0,1}; and iy € {-1,
0, 1} be the number remaining in the set {-1,0,1} after iy, i,
have been removed from it. Define
/ Piip -1 B
= Cnn Cl']l‘i’l,'z .
fa=0

D

i, i
Then

X1 2 max ZEp o),
o2 sy
Theorem B. Let m > 2 be a positive integer indepen-
dent of the dimension. Define

m _ i~J
D—I,O,l - Z CnCn—i9
(i,))ed
where

A =G jyi+j<mi+2j<plio—Li,je NU{O}.
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Then

1
m—1
= max[—P(l‘l’lo’ll)J )

m m
D—I,O,l

FORMULATION OF THE RESULT
We managed to strengthen both results due to con-
siderably wider choice of parameters p,;, p_iy, p_1;»

and p” ;. It became fundamentally possible due to
recent works [5—7]. The following new results are
valid.

Theorem 1. Let i < iy;i,i, € {~1,0,1}; and iy € {1,
0, 1} be the number remaining in the set {-1,0,1} after iy, i,
have been removed from it. If, for the chosen i,i,, we
have one of the inequalities
Soq = 2P0y < S
Si0=2P00 <810 S —8Pa1 <8 p

where p, ; is an odd prime, then we define

/ pi],fz_l .
T 1
D, =C; Y, Ciuy
=0
If iy # 0 and, on the contrary, for the chosen i, i,, we
have one of the inequalities

S01 — 2Py, 2 Sop S-10 ~ 2p_ip 2 S 100

where p, . is an odd prime, then t is defined as t =
Sii, — Py we set d =2t—5,. +1 and k =5, ;, con-
sider dy,d, e NU{0}:d, +d, =d, set m; =n-1[ —d,

and k, =5, ; —d,, define r € N by the relation

d, —1
ki—d, +1)| 2+ 22 )
(l ? )( r+1

<n <(k1—d2+1)(2+d2_1j,

”
and set
1 dy+2r dll P
f n n—1; i
1 m—k =k i=0
Finally,
Xl > max P(I—IJO!II).

insiy .

LR
Theorem 2. Let m > 2 be a positive integer indepen-
dent of the dimension. If 5_,, —mp" |, <s_,,, holds

with some odd prime p |, then define
m _ i~J
Dfl,O,l - z Cncn—i’
(i,)esd
where
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sho= 4G, i+ ) <mi+2j < plioy—Lije NU{0}.
If Sy —mplig, 25 10 then define d = 5_,, —

mp” o, + 1. Let mt = (my, my, my),

m_y, My, my
M= m_j, My, m,|,
m_,; My M3

and all elements of the vector and the matrix are positive
integers such that

my + m, + my, = n,
m_y; +my, +my; = m,

m_,+ My, +m,=m, m,3+my;+m;=nm,,

mo+m,+m 5 =10,
Moy + Mgy +myy =1hy, my+m,+my =1

and another condition be satisfied. Suppose that the set
{1,2,...,n} is represented as a union of three disjoint parts
M,, M,, M of respective cardinalities m,, m,, m. A vector
X =(xy,...,x,) € V,(I_i, 1y, 1) is said to satisfy the partition
T(M17M27M3) l/‘
Hie My:x; =1} =m_,,
Hie Mi:x; =0l =my,, [lie Mi:x;=1}|=m,,
Hie My:x; =-1}| = m_y,,
Hie Myx; =0l =my,, [ie Myx; =1}|=m,,
|{l (S M3Zx,~ = _1}| = m_1,3,
ie My:x; =0} =my;, |{ie My:x; =1} =m;.

Another condition on the parameters m and I is that
any two vectors X,y satisfying the same partition have a
scalar product equal to at least d. Define

n omolmoplm ]

m!m,\m;) L)
mymgptmg 5! mytmy o m ! cc’
: : : n~n—i»

N Al (e

where

A={G,jyi+j<ni+2j<plo -1
Finally,
1
X; = max [—P(I‘l’lo’ll)]m_l.
D,

Note that the improvements given by Theorems 1
and 2 as compared with Theorems A and B are the
most significant in the cases /, ~ n, [, € (0,1). In
these cases, all estimates have the form (c + o(1))";
moreover, for a large class of parameters /y,/;,/",, the
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new values c are strictly greater than the previous ones,
i.e., the well-known inequalities are strengthened
exponentially.

Note also that similar problems for other parameter
asymptotics were studied in recent works [8§—15].
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