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Abstract—The eigenvalues and eigenfunctions of certain operators generated by symmetric differential
expressions with constant coefficients and self-adjoint boundary conditions in the space of Lebesgue square-
integrable functions on an interval are explicitly calculated, while the resolvents of these operators are integral
operators with kernels for which the theorem on an eigenfunction expansion holds. In addition, each of these
kernels is the Green’s function of a self-adjoint boundary value problem, and the procedure for its construc-
tion is well known. Thus, the Green’s functions of these problems can be expanded in series in terms of eigen-
functions. In this study, identities obtained by this method are used to calculate the sums of convergent num-
ber series and to represent the sums of certain power series in an intergral form.
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1. Let  and  be the Hilbert space
of Lebesgue square-integrable functions on the inter-
val . Let  denote the extension of the minimal

closed symmetric operator L0 generated in  by
the expression

and the boundary condition

It is well known that Sα is a self-adjoint operator
with a discrete simple spectrum. The numbers λ1k :=

 are the eigenvalues, while the functions

are the corresponding orthonormal eigenfunctions of
the operator Sα. In addition, each self-adjoint exten-
sion of the operator L0 is specified by a boundary con-
dition of the form  where  is a fixed
number (see, for example, [1, Chapter IV, Section 55]).

Let  be a polynomial of degree  with real
coefficients. We consider the operator  Evi-
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dently, the domain Dα of this operator is specified by
the equality

where

and, if , then

Thus,  is a self-adjoint operator generated by a
differential expression with constant coefficients 
and the boundary conditions 
In addition,  has a discrete spectrum of the form

and the eigenfunction ϕk corresponds to the eigen-
value .

We now assume that the number  is a regular
point of the operator  (that is, ) and con-
sider its resolvent R. It is well known that R is an inte-
gral operator with the kernel  being the Green’s
function of the problem

(1)

A procedure for constructing this function is also well
known (see, for example, [2, Part 2, Chapter I, Sec-
tion 1.5]). To be precise, let  be a
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fundanmental system of solutions to the equation
 and

where a0 is the leading coefficient of the polynomial
 and  is the Wronskian of the functions

. Then we have

(2)

where  and values of the forms
  can be obtained by the for-

mulas

Theorem 1. Let , and let  be a polyno-
mial of degree n ( ) with real coefficients such that

 for 

Then the function  defined by formula (2) is
the Green’s function of problem (1) and it holds that

2. Let  denote a polynomial of degree 
with real coefficients. The following corollaries to
Theorem 1 hold true.

Corollary 1. Let a polynomial  be such that
 for , and let . Let

α = 0 in problem (1).

Then the Green’s function  of this problem can
be represented in the form

Corollary 2. Let polynomials  and  and a
number α be the same as those in Corollary 1, and let
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where

and

are the Fourier coefficients of the function .

Corollary 3. Let a polynomial  be such that

 for , and let Pn(x) =

. Let  in problem (1). Then the Green’s

function  of this problem can be represented in
the form

3. Evidently, Corollaries 1–3 deal with functions of
the operator generated in the space  by the
expression  and by periodic boundary con-
ditions (  and ) or antiperi-
odic ones (  and ). In
addition, for the operators generated by the expression

 and other appropriate boundary conditions, we
can easily find explicit formulas for eigenvalues and
the corresponding eigenfunctions (see, for example,
[2, Part 3, Chapter II, problem 2.9]). A detailed anal-
ysis of self-adjoint operators obtained in such a way
and the application of the above method to them will
be addressed elsewhere. Here, we confine ourselves to
the following particular case.

Let  denote the self-adjoint operator generated by
the expression  and Dirichlet boundary conditions
(that is, by the conditions ) in .
As before (see Section 2), let  be a polynomial of
degree m with real coefficients. We consider the oper-
ator . The domain D of this operator is as fol-
lows:

where the linear forms  are defined by the equal-
ities
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(3)

and, if y ∈ D, then

(4)

Obviously, the numbers k2 and  are the eigen-
values of the operators S and , respectively, while

the functions  ( ) are the

corresponding orthonormal eigenfunctions.
Theorem 2. Let a polynomial  be such that

 for . Then the function 
defined by formula (2) is the Green’s function of prob-
lem (1), where the expression  (= ) is given by
formula (4) and the forms  are defined by for-
mula (3); moreover,

(5)

4. Evidently, the results obtained in Sections 1–3
can be used to calculate the sums of certain convergent
number series. We give several examples.

Example 1. In the notation of Theorem 1, the func-
tion  obviously does not depend on x, that is,

 for any , and it holds that

Example 2. In its turn, it follows from Corollary 1
that

(6)

Example 3. Parseval’s identity and Corollary 2
imply that

Example 4. It follows from Corollary 3 that

Example 5. It follows from Theorem 2 that
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The list of these formulas can obviously be contin-
ued by choosing, for example, particular values of the
variables x and t in the formulas of Corollaries 1 and 3
or Theorem 2.

Remark. There are well-known methods that make
it possible to calculate the sums of convergent series

with a general term of the form , where p(x) and

q(x) are polynomials, generally, in terms of special
functions, in particular, of digamma functions (see [3,
Chapter 1, Section 1.2; 4, Chapter 6, Section 6.8]). In
some cases, these sums can be expressed in terms of
values of elementary functions (see, for example, [5,
Chapter 5, Section 5.1]). An advantage of the formulas
given in Examples 1–5 lies in the fact that the sums in
them are expressed directly in terms of values of an
easy-to-construct quasi-polynomial.

Example 6. Let  and . Let
 in problem (1). It follows from (2) that the

Green’s function  of the resulting problem is
defined by the equality (see also [6, Chapter 3, prob-
lem 28])

while equalities (6) coincide with Euler’s formulas for

decomposition of the functions  and 

into simple fractions, that is,

and

Thus, formulas (6) are, in a sense, generalizations of
these decompositions.

5. Using Fourier series expansions of the functions

where  is a parameter (see [5, Chapter 5,
Section 5.4.9, formulas (3) and (13), and Section
5.4.2, formulas (9) and (10)]), and taking into account
equality (5), we can prove the following assertion.

Theorem 3. Let  and let pm(x) and 
be the same functions as in Theorem 2. Then
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Example 7. Let . Comparing formula (5)
at t = x and the Fourier series expansion of the Ber-
noulli polynomial  (see, for example, [4, Section
23, formula (23.1.18); 5, Chapter 5, Section 5.4.2, for-
mula (7)]) makes it possible to conclude that

where  are the Bernoulli numbers. Using this rela-
tion and the definition of the polylogarithmic function

 of order j (see, for example, [7, Chapter 7, Sec-
tion 7.1, formula (7.1)]), that is,

we can prove that, for  the identities in The-
orem 3 can be written as

(7)

and

(8)

Thus, the formulas in Theorem 3 are generaliza-
tions of (7) and (8). Note also that, for z = 1, formulas

(7) and (8) are well known, since  and
, where  is the Riemann zeta

function (see [4, Section 23; 5, Chapter 5, Section
5.1.2; 7, Chapter 7, Section 7.2.1]), while for 
these formulas were obtained in [8].
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