
ISSN 1064-5624, Doklady Mathematics, 2018, Vol. 98, No. 2, pp. 522–525. © Pleiades Publishing, Ltd., 2018.
Original Russian Text © S.A. Kashchenko, 2018, published in Doklady Akademii Nauk, 2018, Vol. 482, No. 5.

MATHEMATICAL
PHYSICS
Dynamics of a Delay Logistic Equation with Diffusion
and Coefficients Rapidly Oscillating in Space Variable

S. A. Kashchenkoa,b,*
Presented by Academician of the RAS V.V. Kozlov April 26, 2018

Received May 30, 2018

Abstract—The applicability of the averaging principle in the study of the dynamics of a practically important
delay logistic equation with diffusion and coefficients rapidly oscillating with respect to the space variable is
analyzed. A task of special interest is to address equations with rapid oscillations of the delay coefficient or a
quantity characterizing the deviation of the space variable. Bifurcation problems arising in critical cases for
the averaged equation are studied. Results concerning the existence, stability, and asymptotic behavior of
periodic solutions to the original equation are formulated.
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1. Consider the scalar delay logistic equation with
diffusion

(1)

supplemented with the boundary conditions

(2)

As a phase space, it is convenient to use the Sobolev

space  consisting of

functions of the class  satisfying the boundary con-
ditions (2). All the coefficients in (1) are positive and
have clear biological interpretations [1, 2]. Specifi-
cally, the coefficient d characterizes the mobility of the
population, r is called the Malthusian coefficient, T
characterizes the time delay, and the coefficient a
describes the inhomogeneity of the habitat. Problem
(1), (2) has been extensively studied (see, e.g., [1, 3]).

Assume that all coefficients in (1) are -periodic
functions of the space variable . The basic assump-
tion is that the parameter  is sufficiently large, i.e.,

.
Boundary value problems of this type frequently

arise in applications (see, e.g., [4–6]). In particular,
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numerous distributed problems describing fine-
grained structures [6] are reduced to such problems.

The averaging principle in various problem formu-
lations has been formulated and substantiated by
numerous authors. Primarily, we note N.M. Krylov’s
and Bogolyubov’s classical works [7, 8], where averag-
ing over time was considered. First, we formulate a
simple but fundamental result whose proof follows
from the above-mentioned works. For this purpose,
define

Consider the averaged equation (1), namely,

(3)

where .
Given an arbitrary constant L > 0 and an arbitrary ini-

tial function , let 
and  denote the solutions (if any) of boundary
value problems (1), (2) and (3), (2) for  and

 with the same initial function  at t = 0.
Theorem 1. Suppose that the boundary value problem

(2), (3) has a solution  for . Then, for
 and sufficiently large ω, the boundary value

problem (1), (2) also has a solution  and, as
,
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Let us examine the coincidence and differences in
the dynamic properties of solutions to the original
problem (1), (2) and averaged problem (3), (2). The
following result deals with t-periodic solutions of these
problems.

Theorem 2. Assume that  is a periodic solution
of the boundary value problem (3), (2) and the problem
linearized about  has only one multiplier equal to
1 in absolute value. Then, for all sufficiently large , the
boundary value problem (1), (2) has a t-periodic solu-
tion  such that, as ,

For sufficiently large ω, the periodic solutions 
and  have identical stability properties.

Below, we consider the most important cases.
First, let

(5)
Note that, for constant coefficients, the stability

condition for a positive equilibrium is , while, for

, this equilibrium is unstable.

Proposition 1. Assume that condition (5) holds and
only one of the coefficients in (3) is not identically con-
stant. Then, for sufficiently large ω, the stability proper-

ties of the positive equilibrium for  and  are

identical in problems (1), (2) and (3) (2).
Proposition 2. If constraint (5) holds and the coeffi-

cients  and  are not constant, then the stabil-
ity condition for a positive equilibrium is the same as in
the case of the equation with constant coefficients, but the
equilibrium itself is different.

Proposition 3. If constraint (5) holds and the coeffi-
cients  and  are not constant, then the stabil-
ity domain in the parameter space can be larger or
smaller depending on the choice of these two coefficients.
For example, let  and r(s) =

. Then the stability domain with respect to
the parameter  is larger for  and smaller for

.
The most prominent role is played by all the coef-

ficients in the critical case, i.e., for

Suppose that, in (1),

Then, in (2), (3), we have the critical case in the stabil-
ity problem for the equilibrium , i.e., an
Andronov–Hopf bifurcation occurs.
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It is well known (see, e.g., [11, 12]) that, in a suffi-
ciently small neighborhood of the positive equilibrium
of (2), (3), there exists a stable locally invariant inte-
gral two-dimensional manifold on which this bound-
ary value problem becomes, up to ,

(6)

where  and

the function  is related to solutions of (2), (3) by the
equality

Then, in a small neighborhood of the positive equilib-
rium, the original boundary value problem (1), (2)
also has a stable invariant two-dimensional integral
manifold on which this problem has the form

(7)

Here, δ is the same as in (6), while  is given by the
formula

Note that , so, in the case under consider-
ation, a stable cycle in problem (1), (2) is created and
destroyed in an infinite process as .

Now, assume that constraint (5) is not satisfied.
Let

(8)

and the other coefficients in (1) be constants. Then the
averaged equation (3) can be represented in the form

Accordingly, a criterion for the stability of the equilib-
rium  is that all the roots of the characteristic
equation

where , have a negative real part.

This condition holds for
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Let us analyze how rapid oscillations of the
medium (the coefficient a(s)) influence the stability of

the equilibrium. Assume that .

We find the asymptotics of the positive equilibrium
 in (1), (2) up to . Let

Then

where

To analyze the stability of , we make the
substitution  in (1), (2) and linearize
the problem (with respect to ). The function  in
the linearized problem is written as

Corresponding computations yield ,

Thus, for all sufficiently large ω, the equilibrium
 is exponentially stable, i.e., the rapid oscilla-

tions of  stabilize the equilibrium.
2. Averaging of an equation with an oscillating devi-

ation in the space variable. Equations of this type are
frequently faced in applications [9, 10, 14]. Below, we
study the boundary value problem
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with periodic boundary conditions

(10)

All the coefficients in (9) and  are 2π-periodic
functions; moreover,   and a(x) are positive.

The equation

where , with boundary conditions

 is an averaged equation for (9).
Consider two simple cases that are of great interest

in applications, namely, when the coefficients d, r, and
a are independent of x and the function  has a zero
mean:

and one of the following two relations holds: either

or

The averaged equations become

respectively.
Each of the considered boundary value problems

has the equilibrium . The characteristic equa-
tions for the boundary value problems linearized about

 are

(i) λk = –dk2 –  + (2π –

α)exp(ikB)), 

(ii)  where
 is a Bessel function of the first kind.
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The stability of the equilibrium  is determined by
the sign of . The above formulas imply that
the equilibrium can be stabilized or destabilized by
rapid oscillations in the space variable.

It is of interest to compare the present results with
those obtained for delay equations with coefficients
rapidly oscillating in time [14, 15].

3. Consider the delay logistic equation with diffu-
sion

(11)

with boundary conditions (2). All the coefficients d, r,
a, and T are positive smooth functions of .
The parameter λ is assumed to be sufficiently large:

. The averaging principle can be used in this
case. The role of the averaged equation is played by the
generalized logistic equation with a distributed delay:

Consider the following special case. Suppose that,
in (7), , , , and the func-
tion r(x) is given by the formula

Its equilibrium  is asymptotically stable if

Thus, the stability domain can be enlarged or
reduced by varying the coefficient r(x).

4. Conclusions. The above averaging principle also
applies to other classes of time delay systems with
deviations in space variables. It can be extended to sys-
tems of boundary value problems with space variables
ranging in a two-dimensional domain. When the time
delay or the spatial deviation is not constant, the cor-
responding averaged equation may be other than that
with a single point time delay or a single spatial devia-
tion. In other words, the averaged equation may con-
tain several point time delays (deviations) or may con-
tain a distributed time delay (deviation).

Criteria were obtained under which rapid oscilla-
tions lead to stabilization (i.e., enlarge the stability
domain of certain solutions) or lead to destabilization
(i.e., the corresponding stability domain is reduced).

Bifurcation problems were considered. For an
equation with a rapidly oscillating time delay, it was
shown that a stable cycle is created and destroyed in an
infinite process (as the oscillation frequency is
increased).
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