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Abstract—The concept of an Ω-weakly regular problem is introduced. On the basis of the Zhuravlev operator
approach combined with the neural network paradigm, it is shown that, for each such problem, a correct algo-
rithm and a six-level spatial neural network reproducing the computations executed by this algorithm can be
constructed. Moreover, the set of Ω-weakly regular problems includes the set of Ω-regular problems. It turns
out that a three-level spatial network (μ-block) is a forward propagation network whose inner loop under esti-
mation of the class membership for each test object consists of a single iteration. As a result, the amount of
computations required for the six-level network is reduced noticeably.
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Conditions for the correctness of the algebra of
recognition algorithms with estimate calculation μ-
operators over recognition problems with binary data
(referred to hereafter as problems) were determined in
[3]. These conditions are sufficient ones for correct-
ness and are formulated in the form of constraints on
the set of recognition problems (Ω-regular problems)
for which a correct algorithm [1] can be constructed.
Moreover, each operator of the initial family (model
ECO [2, 3]) is associated with a μ-block, i.e., a spatial
three-level multilayered neural network [3, 4] repro-
ducing the computations executed by an algorithm
(operator) of the initial family. In this context, a com-
mon question arises as to how to relax the above-men-
tioned correctness conditions. Below, we introduce
the concept of an Ω-weakly regular problem, which is
then used, in conjunction with operator theory [1, 2]
and the neural network paradigm, to give an answer to
the above question. An interesting aspect associated
with the obtained result is that, for the considered
problems, we can construct a six-level spatial neural
network such that each of its μ-blocks is a forward
propagation network. Moreover, for each object of a
test sample, the computational process of a μ-block
(its inner loop) used to estimate class membership
consists of a single iteration, which opens up an
opportunity to optimize the computational process for
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the network as a whole. Accordingly, the goal of this
study is to show the opportunity of relaxing the cor-
rectness conditions for the algebra of recognition algo-
rithms with estimate calculation μ-operators [3] and
to justify the improved efficiency of the neural network
as applied to recognition problems with binary data. It
is well known that these problems form a subclass in the
metric space U of recognition problems [1].

Suppose that  x = , ,
 is the space of original objects, i.e., n-

dimensional binary vectors space, and , , …, 
are classes entirely covering X. Let , , …,  be a
system of two-valued monadic predicates over X such
that  ≡ , , . A recog-
nition problem u ∈ U is an ordered pair u = (I0, Xq),
where I0 = 〈Xm, α〉 is the initial information of the
problem u, Xm = {x1, x2, …, xm} is a training sample of
the problem u, and α =  is the classification

matrix of the sample  = , ;
. The sample Xq = {x1, x2, …, xq} for the

problem u is the sample of test objects to be recog-
nized. The elements of the information matrix for Xq,
i.e., the elements of the classification matrix f = 

of the problem u, are defined as  = , j = 1, 2,
…, ; i = 1, 2, …, q. Given an arbitrary problem u = (I0,
Xq), assume that Xm ∩ Xq =  and Cj =  ∩ Xm, j = 1,
2, …, . As an initial equation, we use the operator
equation
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(1)

which is usually associated with the solution of the
direct or inverse problem, where  is a recognition
algorithm (operator) acting from U to F. As a rule, H is
specified as the parametric family of algorithms

=  p = , among which, by
using a certain optimization procedure, one tries to
find an algorithm guaranteeing an acceptable solution
of the problem u. Since the inverse problem is usually
unsolvable for Eq. (1), in the case of a normed space F,
the problem of synthesizing an algorithm  producing
the exact solution of the problem u ∈ U is replaced by
an extremal problem of the type

(2)

Its solution (if any) determines an algorithm  that
is an approximate solution of the inverse problem for
(1). From a practical point of view, the conditions for
constructing  can be rather restrictive and their
verification can face difficulties. In the case under
consideration, using the theorem from [2] on the
decomposition of the recognition operator, we replace
Eq. (1) by the system

where ϑ is the algebra over {Ap} defined in [2]; A is the
operator calculating the estimate matrix ϕ = ; Φ
is the metric space of q ×  matrix; and, given the
matrix ϕ, the decision rule R* [2] determines to which
of the classes , , …,  the objects of the sample Xq

belong. Thus, the problem of constructing the algo-
rithm  is reduced to the problem of constructing

 such that  is a special case of
the classical problem of operator recovery from given
information on the solution and the right-hand side of
an operator equation. In a number of cases [1], relying
on the operator approach, the correctness conditions
for the algebra ϑ over a set of recognition problems can
be determined by augmenting the family {Ap}, which
implies a description of the set of problems U such
that, for each problem u ∈ U in , there is an oper-
ator providing its exact solution, i.e., , where

, , and . Assuming that
the original set of algorithms is a family of estimate
calculation algorithms [2] and u is a regular problem,
an explicit expression for A* in the form of an operator
polynomial was found in [2] and  (Zhuravlev’s
operator) was given by

(3)
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Equation (3) has a universal character. Note that the
degree k of closure [2] can be reduced, but, in this
paper, we use formula (4). In (3), given a matrix ϕ =

, the threshold decision rule  with
parameters  and  (in our
case, with additional constraints [3, 4]) and k deter-
mined by (4) calculates the matrix β =  coincid-
ing with the matrix f of the problem u. In a more gen-
eral case, for the recognition algorithm , the deci-
sion rule  with parameters  and  by ϕ
calculates a matrix β =  that may not coincide

with the matrix f =  of the problem u. In [3] the
concept of an Ω-regular recognition problem was
introduced and it was shown that a correct algorithm
of form (3) can be constructed for each Ω-regular
problem u. The algebra ϑ [2] was constructed over the
family  of estimate calculation
operators (ECO) by applying the following operations:

(a) ; (b) ; (c) .
Each operator  was associated with a three-

level spatial neural network (μ-block) that, for given
u = (I0, Xq), reproduces the computation executed by
A. Such an operator was called in [3] a μ-operator. The
μ-block sequentially calculates the rows of the esti-
mate matrix  = , which is called the matrix of

the μ-block, where  is an estimate determining the

membership of the object  in the class . A
number of constraints were assumed to hold, one of
which was associated with the neural network para-
digm. Specifically, since the synoptic strength of a bio-
logical neuron, including ones making up the μ-block,
is limited, their output values have to belong to some
interval, namely, the half interval (–1, 1]. Assume also
that the elements of the operand matrices in (а)–(с)
and the elements of the resulting matrices in (а)–(с)
belong to the same interval.

Recall that, according to the classical approach [1,
2], the construction of a correct algorithm (see (3))
assumes the construction of quasi-basis operators B(i,
j), i = 1, 2, …, q; j = 1, 2, …, . Here,

where each of the operators Bjt for j = 1, 2, …,  and
; ,  , 

is an estimate calculation μ-operator and each of the
operators  for j = 1, 2, …, ; i = 1, 2, …, q; and τ =

≠
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  is either an estimate
calculation μ-operator or the difference between two
such operators.

Let U be the class of Ω-regular problems [3, 4]. Let
Ω = {ea} with ea ⊂ {1, 2, …, n} and . Define

If Ω = ea, we set . Given an object , a set
of feature weights , and e =

 ∈ Ω, we define  =  = 
and consider the number  of coinciding
coordinates for the vectors , , where .
In what follows, let n > 1, l > 1, m > 1, and q > 1.

The problem  is called Ω-weakly regu-
lar if the following conditions are satisfied:

(i) .
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(ii) For each pair  , there are
, , and  such that

(a) , (b)  ≠ .
The feature  in (ii) is called singled out feature

for the pair x, y by the set Ω. The entire set of Ω-weakly
regular problems is denoted by U0. Then U  U0. Our first
goal is, relying on the operator approach [1, 2], the
results of [6], and the neural network paradigm, to
show and justify the possibility of constructing a cor-
rect algorithm for any problem u ∈ U0. As original
operators, we also use estimate calculation μ-opera-
tors, but the activation functions of first-level neurons
of a μ-block are different from those used in [3, 4]. Let

, , e = , and pe =

. Define the constant .

Let the activation function of first-level neurons (as
well as of their duplicates along the Z axis) in a μ-block
be defined as
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Note that an activation function of this type is level neurons of a μ-block and their duplicates along

intended for constructing a μ-block for the operator
Bjt. Another type of activation function used for first-
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An activation function of this type is used to construct n m
a μ-block for the operator . Here, ir is the index of
the singled out feature for a fixed pair of objects from
the test sample. The function  if  and

 otherwise.
Let ϑ be the algebra of recognition algorithms con-

structed over μ-operators of the ECO family

τ
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 [3] by applying operations
(а)–(с). The next theorems hold.

Theorem 1. Suppose that a nonempty system Ω = {ea}
with ea ⊂ {1, 2, …, n} is given, and let u = (I0, Xq) ∈ U0

be an arbitrary Ω-weakly regular problem and f = 
be the classification matrix of u. Then the algorithm 
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given by (3) with k defined by (4) is correct for the prob-
lem u.

An important positive effect of this result is the
opportunity of relaxing the correctness conditions and
optimizing the computational process for a special
class of neural networks. Here and below, we deal with
the class of six-level spatial neural networks [4, 5]
whose elementary blocks are μ-blocks.

Theorem 2. Suppose that a nonempty system Ω = {ea}
with ea ⊂ {1, 2, …, n} is given, and let u = (I0, Xq) ∈ U0

be an arbitrary Ω-weakly regular problem with classifi-
cation matrix f = . Then, for the problem u, there
is a six-level spatial network with at most  ⋅ (  – 1) +
2  ⋅ q(q – 1) μ-blocks that calculates a matrix β coin-
ciding with the matrix f of the problem u.

In what follows, let  =  be the matrix of a
μ-block and Ω = {ea} with ea ⊂ {1, 2, …, n} be a given
nonempty system. Relying on the proof of Theorem 2
and additional information, we can formulate the fol-
lowing result.

Theorem 3. Let u = (I0, Xq) ∈ U0 be an arbitrary Ω-
weakly regular problem with classification matrix f =

. Then, for the problem u, a six-level spatial net-
work with at most  ⋅ (  – 1) + 2  ⋅ q(q – 1) μ-blocks
can be constructed so that each μ-block is a forward
propagation network whose inner loop consists of a single
iteration when calculating the estimate  (i = 1, 2, …, q;
j = 1, 2, …, l). Moreover, if the matrix f =  of the
problem u and the parameter k are specified, then the matrix
β output by the network coincided with the matrix f.

The proof of Theorem 1 is based on Theorem 2
from [2], while Theorem 1 itself underlies the proofs of
Theorems 2 and 3. A feature of the considered net-

works is that their inner levels make use of diagonal
activation functions, for which the output of the neu-
ron adder coincides with the value of the activation
function itself. As a result, the intermediate computa-
tions in the inner and outer loops of these networks are
noticeably simplified. Note also that, as Ω, one can
use Ω0 = {{1}, {2}, …, {n}} and Ω1 = {{1, 2, …, n}} [1,
2], subsets of Ω0 of cardinality k ≥ 1, bases of the fea-
ture set [6], representative sets [1], subsets of irredun-
dant tests [6, 7] (for problems with disjoint classes),
and so on. 

Concerning the efficiency of the computational
process in a network of the considered type, we note
that the only delay in the computations is associated
solely with the fifth level of the network, where a sim-
ple function is recursively calculated [4, 5]. The recur-
sion does not go beyond the fifth level and does not
mean recalculations of weights for neurons of this
level.
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