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Abstract—The algebraic version of the Birkhoff conjecture is solved completely for billiards with a piecewise
C2-smooth boundary on surfaces of constant curvature: Euclidean plane, sphere, and Lobachevsky plane.
Namely, we obtain a complete classification of billiards for which the billiard geodesic f low has a nontrivial
first integral depending polynomially on the velocity. According to this classification, every polynomially
integrable convex bounded planar billiard with C2-smooth boundary is an ellipse. This is a joint result of
M. Bialy, A.E. Mironov, and the author. The proof consists of two parts. The first part was given by Bialy and
Mironov in their two joint papers, where the result was reduced to an algebraic-geometric problem, which
was partially studied there. The second part is the complete solution of the algebraic-geometric problem pre-
sented below.
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1. INTRODUCTION AND THE MAIN RESULTS
Let  be an arbitrary two-dimensional surface with

a Riemannian metric and  be a connected
domain with a piecewise smooth boundary. The geo-
desic f low of the billiard  on the tangent bundle 
is defined as follows. A point , where

 and , moves along the trajectory of the
geodesic f low of  until  hits the boundary . In
the collision, the point  remains unchanged, while
the velocity  reflects from the boundary (to become
a vector  directed inside ) according to the usual
reflection law: the angle of incidence is equal to the
angle of reflection and . Then the motion
continues along the trajectory of the geodesic f low
issued from the point , etc.

The billiard geodesic f low thus defined has a trivial
first integral: the squared magnitude of the velocity. A
billiard in a convex domain with a smooth boundary is
called integrable if its f low has an additional first inte-
gral independent of the squared velocity magnitude on
a neighborhood in  of the unit tangent bundle to
the boundary of the billiard. It is well known that ellip-
tic billiards in the plane are integrable. The famous
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Birkhoff conjecture states the converse: any integrable
convex planar billiard with a smooth boundary is an
ellipse. The particular case of the Birkhoff conjecture
when the additional integral is assumed to be a poly-
nomial in the velocity has led to the algebraic Birkhoff
conjecture for billiards on surfaces of constant curva-
ture, which was studied by Bolotin [7, 8] and recently
by Bialy and Mironov [4, 5]. This paper presents a
complete solution of the algebraic Birkhoff conjec-
ture. Let us formulate the corresponding results.

Definition 1. A billiard  with a piecewise
smooth boundary is polynomially integrable if its f low
has a first integral that is a polynomial in the velocity
and is not constant on the hypersurface .
Note that, according to Bolotin’s result [7, 8], for a
surface  of constant curvature and for a smooth con-
nected boundary , polynomial integrability is
equivalent to the existence of the above-mentioned
integral in a neighborhood in  of the unit tangent
bundle of the boundary.

Let  be a two-dimensional surface with a metric of
constant curvature and  be a connected domain
with a piecewise smooth boundary. Assume without
loss of generality that the curvature of the metric is
either zero or : this can be achieved by multiplying
the metric by a positive constant, which changes nei-
ther geodesics nor the polynomial integrability of the
billiard in . The surface  is represented by one of
three standard models in the space  equipped
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Fig. 1. Examples of confocal planar billiards: F1, F2, F are
foci. Billiards (a–c) have integrals of degree 2, and billiard
(d) has an integral of degree 4.
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with a suitable (pseudo) Euclidean metric ,
where

namely, Euclidean plane: , A = diag(1, 1, 0);
the unit sphere: , ; and
the Lobachevsky plane: ,

.

The quadratic form on  defined by 
induces a metric of constant curvature on the surface .
Geodesics on  are its intersections with two-dimen-
sional vector subspaces of . Conics on  are its
intersection with the quadrics ,
where  is a symmetric matrix. Recall the following
generalization of the confocality notion.

Definition 2 [13, p. 84]. The pencil of confocal con-
ics on the surface  is defined using a symmetric
matrix  nonproportional to  and consists of the
conics

(1)

In the Euclidean case, when A = diag(1, 1, 0), we sup-
pose in addition that the x3 axis does not lie in the ker-
nel of the matrix B. For  such that 
and the kernel  is one-dimensional,
let  denote the geodesic
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If  (in the Euclidean case, this corresponds
to a pencil of concentric circles), for each two-dimen-
sional orthogonal vector subspace  we also set

.
Definition 3. A billiard  with a piecewise

smooth boundary is confocal if its boundary consists of
arcs of confocal conics (and contains a nonlinear con-
ical arc) and, possibly, of some segments of geodesics
from the following list of admissible geodesics (here, 
is the matrix determining the corresponding pencil of
confocal conics):

(I) all the geodesics  in (2) and (or)  are
admissible;

(II) for  (modulo A), where
 and ;

(IIa) in the non-Euclidean subcase, the following
geodesics are also admissible:

(3)

(IIb) in the subcase where  is Euclidean
plane and the vector  is not parallel to it, only  and
the first geodesic in (3) are admissible.

Note that, in case (II), the subcase where  is
Euclidean plane and the vector  is parallel to it is
impossible, since, in this subcase, the x3 axis would lie
in the kernel of the matrix B, which is forbidden by the
assumptions.

Confocal billiards were introduced in [8], where
their polynomial integrability with an integral of the
first, second, or fourth degree was proved [8, Section 2,
Proposition 1; the theorem in Section 4]. The case of
a fourth-degree integral that is not reducible to an
integral of degree no higher than two corresponds to a
billiard whose boundary contains conics from a pencil
of type (IIa) or (IIb) and also segments of some of the
admissible geodesics from (3) mentioned in (IIa) and
(IIb), respectively.

Example 1. A planar billiard bounded by arcs of
confocal parabolas and by a segment of the line pass-
ing through a focus orthogonally to the axis of the
parabolas (and, possibly, by segments of the axis, see
Fig. 1d)) has type (IIb). This example of a billiard hav-
ing an integral of degree 4 was first found in [10]. Sim-
ilar billiards on surfaces of nonzero constant curvature
were constructed in [2].

Below is the main result of this paper.

Theorem 1. Let a billiard with a piecewise -smooth
boundary on a surface  of constant curvature be poly-
nomially integrable, and let its boundary contain at least
one nonlinear smooth arc. Then the billiard is confocal.

Corollary 1. Every bounded polynomially integrable
billiard with a -smooth boundary on Euclidean plane
is an ellipse.
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Theorem 1 is a joint result of Bialy, Mironov, and
the author of the present paper. Its proof consists of
two parts.

(i) Bialy and Mironov’s papers [4, 5], where a geo-
metric construction was used to reduce Theorem 1 to
an algebraic-geometric problem, which was partially
studied there:

(ii) a complete solution of the above algebraic-geo-
metric problem (Theorem 5, see below). For the com-
plete proof, see https://arxiv.org/abs/1706.04030.

A detailed overview on the history of studying the
Birkhoff conjecture can be found in [3, 14], where its
local version is proved, namely, any integrable defor-
mation of an ellipse is an ellipse. The complete poly-
nomial integrability of billiards of arbitrary dimension
on confocal quadrics in Euclidean space and on quad-
rics in spheres and in Lobachevsky spaces is proved in
[12, 13]. The above-mentioned results of Bolotin,
Bialy, and Mironov are presented below. The families
of planar billiards with piecewise smooth boundaries
depending continuously on a single parameter that
have a common polynomial integral were classified by
Abdrakhmanov in [1]. (In fact, it is sufficient to
require that the union of the boundaries not lie in an
algebraic curve, see [1, p. 30].) The solution of the
algebraic Birkhoff conjecture for planar billiards with
an integral of degree at most 4 was obtained by Bialy
and Mironov in [6]. An analogue of the algebraic Birk-
hoff conjecture for outer planar billiards was formu-
lated and partially studied in [11] and was completely
proved in [15].

2. PROOF OF THEOREM 1

A point  is identified with its position vector

in .

Theorem 2 (see [7; 8, p. 119; 9, Chapter 5, Section 3,
Proposition 5]). For every polynomially integrable bil-
liard  with a piecewise -smooth boundary,
there exists a first integral that is not constant on the level
hypersurface  and is a homogeneous polynomial

 of even degree in the components of the moment
vector

(4)

Every -smooth arc in  lies in an algebraic curve.
Theorem 3 [8, Section 4]. Let a billiard with a piece-

wise -smooth boundary on the surface  be polynomi-
ally integrable. Suppose that its boundary contains a
nonlinear arc of a conic. Then the billiard is confocal.

Definition 4. Let  be an arbitrary conic
(either regular or a pair of distinct straight lines) and

∈ Σr
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. For every straight line passing through

, consider its projective involution with the fixed

point  that permutes its two points of intersection

with . The transformation thus constructed is a pro-

jective involution , which is called the

-angular symmetry centered at .

Definition 5. Let  be a conic. An irreduc-

ible algebraic curve  different from  and from

a straight line generates a rationally integrable -angu-

lar billiard if there exists a rational function 

on  (called an integral) with poles lying in  such

that, for any point , the restriction of the

function  to the projective tangent line  is invari-

ant under the -angular symmetry centered at .

Let  be the tautological projec-

tion. The form  on  determines an orthogonal
polarity that takes a vector subspace to its orthogonal com-

plement and induces a projective duality 

sending projective lines to points.

Theorem 4. Let 
and  be a polynomially integrable billiard with a
homogeneous integral  of even degree . Consider
the corresponding function

regarded as a rational function on . Let

 be a nonlinear -smooth arc of the boundary
and  be the curve dual to its projection :

points of  are orthogonally polar-dual to the tangent
lines to . Every nonlinear irreducible component of
the complex projective Zariski closure of  generates a
rationally integrable -angular billiard with integral .

Theorem 4 follows from [5, Theorem 1.3, p. 151]
and the results of [4].

Theorem 1 is implied by Theorems 3 and 4 and the
following theorem.

Theorem 5. Given an arbitrary conic  that is
either a regular conic or a pair of distinct lines, every
irreducible algebraic curve generating a rationally inte-
grable -angular billiard is a conic.

Sketch proof of Theorem 5. Let  be an irre-

ducible curve generating a rationally integrable -

angular billiard with an integral . Then, according to
[4, Theorem 1; 5, Theorem 1.2],

(0) all the singular and inflection points of the

curve  are contained in .

We study local branches (irreducible components
of a germ) of the curve  at points of the intersection

. Each local branch is nonlinear; thus, in a
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suitable local affine chart  centered at , it can be
parametrized holomorphically bijectively by a small
complex parameter :

Recall that a branch is quadratic if   and subqua-

dratic if  . We prove the following assertions and

theorem.

(i) If  is a pair of straight lines intersecting at a

point , then any branch at  that is transversal to
both lines is quadratic.

(ii) If  is a regular point of a conic , then

(iia) any branch at  that is tangent to  is quadratic;

(iib) any branch transversal to  is regular and qua-
dratic.

Theorem 6. Let  be a conic (either a regular
conic or a pair of distinct lines). Suppose that  is
an irreducible algebraic curve different from a straight
line that satisfies assertion (0). Let each of its local
branches of type (i) (if any) be subquadratic and all
branches of types (iia) and (iib) at points of the intersec-
tion  be quadratic (respectively, regular and qua-
dratic). Then  is a conic.

The proof of Theorem 6 is based on Shustin’s
argument about invariants of plane curves in [15,
Section 4], where a similar result was proved in the

case where  is a straight line. Theorem 5 follows from
assertions (0), (i), (iia), and (iib) and Theorem 6.

It is well known that  (analogously to

[4, Theorem 3; 5, Theorem 1.3]). Let .
The proof of (i) and (iia) makes use of only the invari-

ance of the intersections  under -angular

symmetry centered at  and consists in its asymptotic

analysis as . Namely, we study those

points of the intersection  for which a suitable

coordinate (  or ) is asymptotically equivalent to

the corresponding coordinate of  up to a nonzero
constant asymptotic factor. It is proved that all the
“nontrivial” asymptotic factors are exactly suitable
powers of the roots of a finite set of polynomials of the

form , , , constructed

using the germ . From this and the symmetry of

the intersections , it follows that the set of
these powers of roots (except possibly for a small
explicit exception) is invariant under a suitable involu-

tion : either taking the inverse or the central
symmetry with respect to 1. Then we deduce that

. The proof of (iib) is the most technical part of

the proof. It relies on the symmetry of the intersec-

tions and the Bialy–Mironov formula for the
Hessian of the polynomial defining the curve  (see [4,
Theorem 6.1; 5, formulas (16) and (32)]).

Any nonlinear arc of the boundary of a polynomi-

ally integrable billiard  contains an arc of a

conic (Theorems 4 and 5). Therefore,  is confocal by
Theorem 3. Theorem 1 is proved.
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